• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 159 (2022)
Wenhao XU*, Yichang SHOU, and Hailu LUO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.001 Cite this Article
    XU Wenhao, SHOU Yichang, LUO Hailu. Spin-orbit interaction of light[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 159 Copy Citation Text show less
    References

    [1] Berestetskii V B, Lifshitz E M, Pitaevskii L P. Quantum Electrodynamics[M]. 2nd ed., Oxford: Pergamon Press, 1982: 16-29.

    [2] Mathur H. Thomas precession, spin-orbit interaction, and Berry’s phase[J]. Physical Review Letters, 1991, 67(24): 3325-3327.

    [3] Rashba E I, Sherman E Y. Spin-orbital band splitting in symmetric quantum wells[J]. Physics Letters A, 1988, 129(3): 175-179.

    [4] Shen S Q, Ma M, Xie X C, et al. Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field[J]. Physical Review Letters, 2004, 92(25): 256603.

    [5] Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect[J]. Physical Review Letters, 2004, 92(12): 126603.

    [6] Bérard A, Mohrbach H. Spin Hall effect and Berry phase of spinning particles[J]. Physics Letters A, 2006, 352(3): 190-195.

    [7] Rashba E I. Spin-orbit coupling and spin transport[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34(1/2): 31-35.

    [8] Andrews D L, Babiker M. The Angular Momentum of Light[M]. Cambridge University Press, 2013: 174-245.

    [9] Dooghin A V, Kundikova N D, Liberman V S, et al. Optical magnus effect[J]. Physical Review A, 1992, 45(11): 8204-8208.

    [10] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

    [11] Liberman V S, Zel’dovich B Y. Spin-orbit interaction of a photon in an inhomogeneous medium[J]. Physical Review A, 1992, 46(8): 5199-5207.

    [12] Baranova N B, Savchenko A Y, Zel’Dovich B Y. Transverse shift of a focal spot due to switching of the sign of circular polarization[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 1994, 59: 232.

    [13] Zel’ Dovich B Y, Kundikova N D, Rogacheva L F. Obsevation transverse shift of a focal spot upon a change in the sign of circular polarization[J]. ZhETF Pisma Redaktsiiu, 1994, 59: 737.

    [14] Fedorov F I. To the theory of total reflection[J].Journal of Optics, 2013,15(1): 4002.

    [15] Imbert C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam[J]. Physical Review D, 1972, 5(4): 787-796.

    [16] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 2004, 93(8): 083901.

    [17] Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Physical Review Letters, 2006, 96(7): 073903.

    [18] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 2008, 319(5864): 787-790.

    [19] Bliokh K Y, Rodriguez-Fouruno F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.

    [20] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560-567.

    [21] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-125.

    [22] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [23] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.

    [24] Bliokh K Y, Niv A, Kleiner V, et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2008, 2(12): 748-753.

    [25] Bomzon Z, Gu M, Shamir J. Angular momentum and geometrical phases in tight-focused circularly polarized plane waves[J]. Applied Physics Letters, 2006, 89(24): 241104.

    [26] Zhao Y, Edgar J S, Jeffries G D, et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 2007, 99(7): 073901.

    [27] Schwartz C, Dogariu A. Conservation of angular momentum of light in single scattering[J]. Optics Express, 2006, 14(18): 8425-8433.

    [28] Haefner D, Sukhov S, Dogariu A. Spin Hall effect of light in spherical geometry[J]. Physical Review Letters, 2009, 102(12): 123903.

    [29] Rodríguez-Herrera O G, Lara D, Bliokh K Y, et al. Optical nanoprobing via spin-orbit interaction of light[J]. Physical Review Letters, 2010, 104(25): 253601.

    [30] Bliokh K Y, Ostrovskaya E A, Alonso M A, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 2011, 19(27): 26132-26149.

    [31] Han L, Liu S, Li P, et al. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams[J]. Physical Review A, 2018, 97(5): 053802.

    [32] Li M M, Cai Y N, Yan S H, et al. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams[J]. Physical Review A, 2018, 97(5): 053842.

    [33] Hasman E, Biener G, Niv A, et al. Space-variant polarization manipulation[J]. Progress in Optics, 2005, 47: 215-289.

    [34] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.

    [35] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

    [36] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330.

    [37] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

    [38] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478.

    [39] Wang B, Dong F, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.

    [40] Wen D D, Yue F Y, Liu W W, et al. Geometric metasurfaces for ultrathin optical devices[J]. Advanced Optical Materials, 2018, 6(17): 1800348.

    [41] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 2018, 30(23): 1706368.

    [42] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901.

    [43] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [44] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226.

    [45] Wan X, Zhang Q, Chen T Y, et al. Multichannel direct transmissions of near-field information[J]. Light: Science & Applications, 2019, 8: 60.

    [46] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

    [47] Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics Physical Society (Great Britain), 2017, 80(6): 066401.

    [48] Ling X H, Zhou X X, Yi X N, et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light: Science & Applications, 2015, 4(5): e290.

    [49] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143.

    [50] Luo W J, Xiao S Y, He Q, et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 2015, 3(8): 1102-1108.

    [51] Korger J, Aiello A, Chille V, et al. Observation of the geometric spin Hall effect of light[J]. Physical Review Letters, 2014, 112(11): 113902.

    [52] Zhu W G, Zheng H D, Zhong Y C, et al. Wave-vector-varying Pancharatnam-Berry phase photonic spin hall effect[J]. Physical Review Letters, 2021, 126(8): 083901.

    [53] Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light[J]. Science, 2014, 346(6205): 67-71.

    [54] Vasiliev A, Muneeb M, Allaert J, et al. Integrated silicon-on-insulator spectrometer with single pixel readout for mid-infrared spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-7.

    [55] O’connor D, Ginzburg P, Rodríguez-Fortuo F J, et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 2014, 5: 5327.

    [56] Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 2015, 348(6242): 1448-1451.

    [57] Eismann J S, Nicholls L H, Roth D J, et al. Transverse spinning of unpolarized light[J]. Nature Photonics, 2021, 15(2): 156-161.

    [58] Peng L, Duan L F, Wang K W, et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media[J]. Nature Photonics, 2019, 13(12): 878-882.

    [59] Shi P, Du L, Li C, et al. Transverse spin dynamics in structured electromagnetic guided waves[J]. Proceedings of the National Academy of Sciences, 2021, 118(6): e2018816118.

    [60] Qin Y, Li Y, He H, et al. Measurement of spin Hall effect of reflected light[J]. Optics Letters, 2009, 34(17): 2551-2553.

    [61] Luo H L, Zhou X X, Shu W X, et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 2011, 84(4): 043806.

    [62] Zhou X X, Xiao Z C, Luo H L, et al. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements[J]. Physical Review A, 2012, 85(4): 043809.

    [63] Zhou X X, Ling X H, Luo H L, et al. Identifying graphene layers via spin Hall effect of light[J]. Applied Physics Letters, 2012, 101(25): 251602.

    [64] Chen S Z, Ling X H, Shu W X, et al. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect[J]. Physical Review Applied, 2020, 13: 014057.

    [65] Chen S Z, Zhou X X, Ling X H, et al. Measurement of the optical constants of monolayer MoS 2 via the photonic spin Hall effect[J]. Applied Physics Letters, 2021, 118(11): 111104.

    [66] Wang R S, Zhou J X, Zeng K M, et al. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect[J]. APL Photonics, 2020, 5(1): 016105.

    [67] Maguid E, Yannai M, Faerman A, et al. Disorder-induced optical transition from spin Hall to random Rashba effect[J]. Science, 2017, 358(6369): 1411-1415.

    [68] Wang B, Maguid E, Rong K X, et al. Photonic topological spin Hall effect mediated by vortex pairs[J]. Physical Review Letters, 2019, 123(26): 266101.

    [69] Wang B, Rong K X, Maguid E, et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect[J]. Nature Nanotechnology, 2020, 15(6): 450-456.

    [70] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [71] He Y, Liu Z, Liu Y, et al. Higher-order laser mode converters with dielectric metasurfaces[J]. Optics Letters, 2015, 40(23): 5506-5509.

    [72] Padgett M J, Courtial J. Poincaré-sphere equivalent for light beams containing orbital angular momentum[J]. Optics Letters, 1999, 24(7): 430-432.

    [73] Milione G, Sztul H I, Nolan D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5): 053601.

    [74] Liu Y C, Ling X H, Yi X N, et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface[J]. Applied Physics Letters, 2014, 104(19): 191110.

    [75] Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 2015, 91(2): 023801.

    [76] Liu Z X, Liu Y Y, Ke Y G, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 2017, 5(1): 15-21.

    [77] Zhu T F, Lou Y J, Zhou Y H, et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection[J]. Physical Review Applied, 2019, 11(3): 034043.

    [78] Zhou J, Qian H, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137-11140.

    [79] Zhou J X, Qian H L, Zhao J X, et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. National Science Review, 2021, 8(6): nwaa176.

    [80] Zhou J X, Liu S K, Qian H L, et al. Metasurface enabled quantum edge detection[J]. Science Advances, 2020, 6(51): eabc4385.

    [81] Xu D Y, He S S, Zhou J X, et al. Goos-Hnchen effect enabled optical differential operation and image edge detection[J]. Applied Physics Letters, 2020, 116(21): 211103.

    [82] Xu D Y, He S S, Zhou J X, et al. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect[J]. Optics Letters, 2020, 45(24): 6867-6870.

    [83] Zhu T, Guo C, Huang J, et al. Topological optical differentiator[J]. Nature Communications, 2021, 12: 680.

    [84] Guo C, Xiao M, Minkov M, et al. Photonic crystal slab Laplace operator for image differentiation[J]. Optica, 2018, 5(3): 251-256.

    [85] Pham D L, Xu C Y, Prince J L. Current methods in medical image segmentation[J]. Annual Review of Biomedical Engineering, 2000, 2(1): 315-337.

    [86] Huang J Y, Zhu T F, Ruan Z C. Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator[J]. Physical Review Applied, 2020, 14(5): 054040.

    [87] Zhu T, Huang J, Ruan Z. Optical phase mining by adjustable spatial differentiator[J]. Advanced Photonics, 2020, 2(1): 016001.

    XU Wenhao, SHOU Yichang, LUO Hailu. Spin-orbit interaction of light[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 159
    Download Citation