[1] J. W.Yoonet?al.. Realization of laser intensity over 1023 W/cm2. Optica, 8, 630(2021).
[2] S.Weberet?al.. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-beamlines. Matter Radiat. Extremes, 2, 149(2017).
[3] C.Dansonet?al.. Vulcan Petawatt—An ultra-high-intensity interaction facility. Nucl. Fusion, 44, S239(2004).
[4]
[5] Z.Guoet?al.. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system. Opt. Express, 26, 26776(2018).
[6] J.Zouet?al.. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng., 3, e2(2015).
[7] S.Galeset?al.. The extreme light infrastructure—Nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys., 81, 094301(2018).
[8] J.Bromageet?al.. Technology development for ultraintense all-OPCPA systems. High Power Laser Sci. Eng., 7, e4(2019).
[9] E.Cartlidge. The light fantastic. Science, 359, 382(2018).
[10] G.Tiwariet?al.. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2. Opt. Lett., 44, 2764(2019).
[11] X.Zenget?al.. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett., 42, 2014-2017(2017).
[12] V.Yanovskyet?al.. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 16, 2109-2114(2008).
[13] A. S.Pirozhkovet?al.. Approaching the diffraction-limited, bandwidth-limited petawatt. Opt. Express, 25, 20486(2017).
[14] J. W.Yoonet?al.. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express, 27, 20412(2019).
[15] C. N.Dansonet?al.. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).
[16] M.Marklund, and M.Marklund, P. K.Shukla. Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys., 78, 591-640(2006).
[17] F.Ehlotzky, F.Ehlotzky, K.Krajewska, J. and, K.Krajewska, F.Ehlotzky, K.Krajewska, J. and, J. Z.Kamiński. Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep. Prog. Phys., 72, 046401(2009).
[18] A.Di Piazza, Piazza A.Di, C.Müller, Z.Hatsagortsyan K., C. and, C.Müller, Piazza A.Di, C.Müller, Z.Hatsagortsyan K., C. and, K. Z.Hatsagortsyan, Piazza A.Di, C.Müller, Z.Hatsagortsyan K., C. and, C. H.Keitel. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).
[19] G.Mourou, and G.Mourou, T.Tajima. Summary of the IZEST science and aspiration. Eur. Phys. J. Spec. Top., 223, 979(2014).
[20] A.Di Piazzaet?al.(2009).
[21] A.Gonoskov, A.Gonoskov, G.Blackburn T., M.Marklund, S. and, T. G.Blackburn, A.Gonoskov, G.Blackburn T., M.Marklund, S. and, M.Marklund, A.Gonoskov, G.Blackburn T., M.Marklund, S. and, S. S.Bulanov. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys., 94, 045001(2022).
[22] P.Zhang, P.Zhang, S.Bulanov S., D.Seipt, V.Arefiev A., A. and, S. S.Bulanov, P.Zhang, S.Bulanov S., D.Seipt, V.Arefiev A., A. and, D.Seipt, P.Zhang, S.Bulanov S., D.Seipt, V.Arefiev A., A. and, A. V.Arefiev, P.Zhang, S.Bulanov S., D.Seipt, V.Arefiev A., A. and, A. G. R.Thomas. Relativistic plasma physics in supercritial fields. Phys. Plasmas, 27, 050601(2020).
[23] A.Fedotov, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, A.Ilderton, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, F.Karbstein, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, B.King, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, D.Seipt, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, H.Taya, A.Fedotov, A.Ilderton, F.Karbstein, B.King, D.Seipt, H.Taya, G.Torgrimsson and, G.Torgrimsson. Advances in QED with intense background fields. Phys. Rep., 1010, 1-138.
[24] J.Schwinger. On gauge invariance and vacuum polarization. Phys. Rev., 82, 664(1951).
[25] J.Klein, and J.Klein, B.Nigam. Birefringence of the vacuum. Phys. Rev., 135, B1279(1964).
[26] S. L.Adler, L.Adler S., N.Bahcall J., G.Callan C., M. and, J. N.Bahcall, L.Adler S., N.Bahcall J., G.Callan C., M. and, C. G.Callan, L.Adler S., N.Bahcall J., G.Callan C., M. and, M. N.Rosenbluth. Photon splitting in a strong magnetic field. Phys. Rev. Lett., 25, 1061(1970).
[27] W. G.Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14, 870(1976).
[28] F.Mackenroth, and F.Mackenroth, A.Di Piazza. Nonlinear double compton scattering in the ultrarelativistic quantum regime. Phys. Rev. Lett., 110, 070402(2013).
[29] B.King, B.King, Piazza A.Di, C. and, A.Di Piazza, B.King, Piazza A.Di, C. and, C. H.Keitel. A matterless double slit. Nat. Photonics, 4, 92(2010).
[30] G. V.Dunne, V.Dunne G., H.Gies, R.Schützhold and, H.Gies, V.Dunne G., H.Gies, R.Schützhold and, R.Schützhold. Catalysis of Schwinger vacuum pair production. Phys. Rev. D, 80, 111301(R)(2009).
[31] B.Zhanget?al.. Vacuum radiation induced by time dependent electric field. Phys. Lett. B, 767, 431(2017).
[32] C.Adolphsenet?al.. The international linear collider technical design report, volume III: Accelerator(2013).
[33] M.Aicheler, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, P.Burrows, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, M.Draper, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, T.Garvey, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, P.Lebrun, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, K.Peach, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, N.Phinney, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, H.Schmickler, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, D.Schulte, M.Aicheler, P.Burrows, M.Draper, T.Garvey, P.Lebrun, K.Peach, N.Phinney, H.Schmickler, D.Schulte, N.Toge and, N.Toge(2012).
[34] CEPC conceptual design report, volume I: Accelerator(2018).
[35] FCC-ee: The lepton collider. Eur. Phys. J. Spec. Top., 228, 261-623(2019).
[36] V.Dinu, V.Dinu, C.Harvey, A.Ilderton, M.Marklund and, C.Harvey, V.Dinu, C.Harvey, A.Ilderton, M.Marklund and, A.Ilderton, V.Dinu, C.Harvey, A.Ilderton, M.Marklund and, M.Marklund. Quantum radiation reaction: From interference to incoherence. Phys. Rev. Lett., 116, 044801(2016).
[37] V.Yakimenko, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, S.Meuren, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, F.Del Gaudio, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, C.Baumann, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, A.Fedotov, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, F.Fiuza, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, T.Grismayer, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, M. J.Hogan, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, A.Pukhov, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, L. O.Silva, V.Yakimenko, S.Meuren, Gaudio F.Del, C.Baumann, A.Fedotov, F.Fiuza, T.Grismayer, J.Hogan M., A.Pukhov, O.Silva L., G.White and, G.White. Prospect of studying nonperturbative QED with beam–beam collisions. Phys. Rev. Lett., 122, 190404(2019).
[38] C. N.Harvey, N.Harvey C., A.Gonoskov, A.Ilderton, M.Marklund and, A.Gonoskov, N.Harvey C., A.Gonoskov, A.Ilderton, M.Marklund and, A.Ilderton, N.Harvey C., A.Gonoskov, A.Ilderton, M.Marklund and, M.Marklund. Quantum quenching of radiation losses in short laser pulses. Phys. Rev. Lett., 118, 105004(2017).
[39] N.Neitz, and N.Neitz, A.Di Piazza. Stochasticity effects in quantum radiation reaction. Phys. Rev. Lett., 111, 054802(2013).
[40] L. L.Ji, L.Ji L., A.Pukhov, Y.Kostyukov I., F.Shen B., K.Akli and, A.Pukhov, L.Ji L., A.Pukhov, Y.Kostyukov I., F.Shen B., K.Akli and, I. Y.Kostyukov, L.Ji L., A.Pukhov, Y.Kostyukov I., F.Shen B., K.Akli and, B. F.Shen, L.Ji L., A.Pukhov, Y.Kostyukov I., F.Shen B., K.Akli and, K.Akli. Radiation–reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett., 112, 145003(2014).
[41] A.Gonoskov, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, A.Bashinov, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, I.Gonoskov, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, C.Harvey, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, A.Ilderton, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, A.Kim, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, M.Marklund, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, G.Mourou, A.Gonoskov, A.Bashinov, I.Gonoskov, C.Harvey, A.Ilderton, A.Kim, M.Marklund, G.Mourou, A.Sergeev and, A.Sergeev. Anomalous radiative trapping in laser fields of extreme intensity. Phys. Rev. Lett., 113, 014801(2014).
[42] A. I.Nikishov, I.Nikishov A., V. I.Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Zh. Eksp. Teor. Fiz., 46, 776(1964).
[43] A. I.Nikishov, I.Nikishov A., V. I.Ritus. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field. Zh. Eksp. Teor. Fiz., 53, 1707(1967).
[44] V. I.Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497(1985).
[45] A.Di Piazza, Piazza A.Di, Z.Hatsagortsyan K., C. and, K. Z.Hatsagortsyan, Piazza A.Di, Z.Hatsagortsyan K., C. and, C. H.Keitel. Quantum radiation reaction effects in multiphoton compton scattering. Phys. Rev. Lett., 105, 220403(2010).
[46] H.Zhang, H.Zhang, F.Shen B., P.Wang W., H.Zhaiet al. S., B. F.Shen, H.Zhang, F.Shen B., P.Wang W., H.Zhaiet al. S., W. P.Wang, H.Zhang, F.Shen B., P.Wang W., H.Zhaiet al. S., S. H.Zhaiet?al.. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses. Phys. Rev. Lett., 119, 164801(2017).
[47] F.Mackenrothet?al.. Chirped-standing-wave acceleration of ions with intense lasers. Phys. Rev. Lett., 117, 104801(2016).
[48] S.Palaniyappanet?al.. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nat. Commun., 6, 10170(2015).
[49] J. H.Bin, H.Bin J., J.Maet al. W., W. J.Maet?al.. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett., 115, 064801(2015).
[50] X. F.Shen, F.Shen X., A.Pukhov, B.Qiao and, A.Pukhov, F.Shen X., A.Pukhov, B.Qiao and, B.Qiao. Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape. Phys. Rev. X, 11, 041002(2021).
[51] C. A. J.Palmeret?al.. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett., 106, 014801(2011).
[52] C.Scullionet?al.. Polarization dependence of bulk ion acceleration from ultrathin foils irradiated by high-intensity ultrashort laser pulses. Phys. Rev. Lett., 119, 054801(2017).
[53] R.Matsui, R.Matsui, Y.Fukuda, Y.Kishimoto and, Y.Fukuda, R.Matsui, Y.Fukuda, Y.Kishimoto and, Y.Kishimoto. Quasimonoenergetic proton bunch acceleration driven by hemispherically converging collisionless shock in a hydrogen cluster coupled with relativistically induced transparency. Phys. Rev. Lett., 122, 014804(2019).
[54] G.Ambrosiet?al.. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 552, 63(2017).
[55] H.Baeret?al.. The international linear collider technical design report, volume II: Physics(2013).
[56] L.Linssen, L.Linssen, A.Miyamoto, M.Stanitzki, H.Weerts and, A.Miyamoto, L.Linssen, A.Miyamoto, M.Stanitzki, H.Weerts and, M.Stanitzki, L.Linssen, A.Miyamoto, M.Stanitzki, H.Weerts and, H.Weerts(2012).
[57] CEPC conceptual design report, volume II: Physics and detector(2018).
[58] A.Abadaet?al.. FCC physics opportunities. Eur. Phys. J. C, 79, 474(2019).
[59] K. K.Andersenet?al.. Experimental investigations of synchrotron radiation at the onset of the quantum regime. Phys. Rev. D, 86, 072001(2012).
[60] A.Bogomyagkov, A.Bogomyagkov, E.Levichev, D.Shatilov and, E.Levichev, A.Bogomyagkov, E.Levichev, D.Shatilov and, D.Shatilov. Beam–beam effects investigation and parameters optimization for a circular e+e− collider at very high energies. Phys. Rev. Spec. Top.-Accel. Beams, 17, 041004(2014).
[61] M.Dienes, M.Month, S.Turner, K.Yokoya, and K.Yokoya, P.Chen. Beam–beam phenomena in linear colliders. Frontiers of Particle Beams: Intensity Limitations, Lecture Notes in Physics(1992).
[62] V.Shiltsev, and V.Shiltsev, F.Zimmermann. Modern and future colliders. Rev. Mod. Phys., 93, 015006(2021).
[63] V. I.Telnov. Restrictions on the energy and luminosity of e+e− storage rings due to Bremstrahlung. Phys. Rev. Lett., 110, 114801(2013).
[64] T.Erber. High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys., 38, 626(1966).
[65] A. K.Harding, K.Harding A., D.Lai. Physics of strongly magnetized neutron stars. Rep. Prog. Phys., 69, 2631(2006).
[66] I. M.Ternov. Synchrotron radiation. Phys. Usp., 38, 409(1995).
[67] J. M.Coleet?al.. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X, 8, 011020(2018).
[68] K.Poderet?al.. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X, 8, 031004(2018).
[69] M. K.Khokonov. Cascade processes of energy loss by emission of hard phonons. J. Exp. Theor. Phys., 99, 690(2004).
[70] M. V.Bondarenco. Multiphoton effects in coherent radiation spectra. Phys. Rev. D, 90, 013019(2014).
[71] S. M.Ross. Introduction to Probability Models(2014).
[72] B.Zhang, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, Z. M.Zhang, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, Z. G.Deng, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, W.Hong, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, J.Teng, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, S. K.He, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, W. M.Zhou, B.Zhang, M.Zhang Z., G.Deng Z., W.Hong, J.Teng, K.He S., M.Zhou W., Y. and, Y. Q.Gu. Effects of involved laser photons on radiation and electron–positron pair production in one coherence interval in ultra intense lasers. Sci. Rep., 8, 16862(2018).
[73] B.Zhang, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, Z. M.Zhang, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, Z. G.Deng, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, J.Teng, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, S. K.He, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, W.Hong, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, W. M.Zhou, B.Zhang, M.Zhang Z., G.Deng Z., J.Teng, K.He S., W.Hong, M.Zhou W., Y. and, Y. Q.Gu. Quantum mechanisms of electron and positron acceleration through nonlinear compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime. Sci. Rep., 9, 18876(2019).
[74] E.Esareyet?al.. Theory and group velocity of ultrashort, tightly focused laser pulses. J. Opt. Soc. Am. B, 12, 1695-1703(1995).
[75] J. D.Jackson. Classical Electrodynamics(1975).
[76] L. D.Landau, D.Landau L., E. M.Lifshitz. The Classical Theory of Fields(1975).