• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021348 (2022)
Zheng-Ji WEN1, Xiao-Wen LI1, Wen-Chao ZHAO1、2, Yan SUN1, Jia-Ming HAO1、3、*, Ning DAI1、4, and Jun-Hao CHU1、3
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2Department of Electronics and Information,Huzhou University,Huzhou 313000,China
  • 3Institute of Optoelectronics,Fudan University,Shanghai 200433,China
  • 4College of Physics and Optoelectronic Engineering,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.011 Cite this Article
    Zheng-Ji WEN, Xiao-Wen LI, Wen-Chao ZHAO, Yan SUN, Jia-Ming HAO, Ning DAI, Jun-Hao CHU. Subwavelength thin-film stack metamaterials:theory and applications[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021348 Copy Citation Text show less
    References

    [1] H A Macleod. Thin-Film Optical Filters(2017).

    [2] B J Stern. Thin Film Thickness Measurement Using Silver-Modified Newton’s Rings. Review of Scientific Instruments, 34, 152-155(1963).

    [3] J Von Fraunhofer. Bestimmung Des Brechungs-Und Farbenzerstreuungs-Vermögens Verschiedener Glasarten, in Bezug Auf Die Vervollkommnung Achromatischer Fernröhre. Franz(1817).

    [4] M Born, E Wolf. Principles of Optics(1999).

    [5] M A Kats, R Blanchard, P Genevet et al. Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media. Nature Materials, 12, 20-24(2013).

    [6] K Pfeiffer, L Ghazaryan, U Schulz et al. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition. ACS Applied Materials and Interfaces, 11, 21887-21894(2019).

    [7] Y Yao, Y Shen, J M Hao et al. Antireflection Coatings Based on Subwavelength Artificial Engineering Microstructures. Acta Physica Sinica, 68, 147802(2019).

    [8] C Jin, Y Yang. Transmissive Nonlocal Multilayer Thin Film Optical Filter for Image Differentiation. Nanophotonics, 10, 3519-3525(2021).

    [9] Y Fink, J N Winn, S Fan et al. A Dielectric Omnidirectional Reflector. Science, 282, 1679-1682(1998).

    [10] X Tang, M M Ackerman, M Chen et al. Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nature Photonics, 13, 277-282(2019).

    [11] H Lin, Z Zhou, H Xie et al. High-Performance Room-Temperature Extended-Wavelength InAs-Based Middle-Wavelength Infrared Photodetector. Physica Status Solidi (A) Applications and Materials Science, 218, 2100281(2021).

    [12] E Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58, 2059-2062(1987).

    [13] S-F Ren, H Chu, Y-C Chang. Anisotropy of Optical Phonons in GaAs-AlAs Superlattices. Physical Review Letters, 59, 1841-1844(1987).

    [14] J Joannopoulos, S Johnson, J Winn et al. Photonic Crystals: Molding the Flow of Light(2011).

    [15] K.V.S , M ElKabbash, V Caligiuri et al. New Directions in Thin Film Nanophotonics(2019).

    [16] A Ghobadi, H Hajian, B Butun et al. Strong Light - Matter Interaction in Lithography-Free Planar Metamaterial Perfect Absorbers. ACS Photonics, 5, 4203-4221(2018).

    [17] Y Lu, H Xu, X W Li et al. Visible-near Infrared Light Superabsorption of Aluminum-Based Planar Metamaterial. J. Infrared Millim. Waves, 40, 314-320(2021).

    [18] M A Kats, D Sharma, J Lin et al. Ultra-Thin Perfect Absorber Employing a Tunable Phase Change Material. Applied Physics Letters, 101, 221101(2012).

    [19] A Poddubny, I Iorsh, P Belov et al. Hyperbolic Metamaterials. Nature Photonics, 7, 958-967(2013).

    [20] S Jahani, Z Jacob. All-Dielectric Metamaterials. Nature Nanotechnology, 11, 23-36(2016).

    [21] K V Sreekanth, S Han, R Singh. Ge2Sb2Te5-Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies. Advanced Materials, 30, 1706696(2018).

    [22] K V Sreekanth, S Sreejith, S Han et al. Biosensing with the Singular Phase of an Ultrathin Metal-Dielectric Nanophotonic Cavity. Nature Communications, 9, 369(2018).

    [23] D G Baranov, Y Xiao, I A Nechepurenko et al. Nanophotonic Engineering of Far-Field Thermal Emitters. Nature Materials, 18, 920-930(2019).

    [24] P Huo, S Zhang, Y Liang et al. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Advanced Optical Materials, 7, 1801616(2019).

    [25] Z Guo, H Jiang, H Chen. Hyperbolic Metamaterials: From Dispersion Manipulation to Applications. Journal of Applied Physics, 127, 071101(2020).

    [26] D R Smith, J B Pendry, M C K Wiltshire. Metamaterials and Negative Refractive Index. Science, 305, 788-792(2004).

    [27] Y Liu, X Zhang. Metamaterials: A New Frontier of Science and Technology. Chemical Society Reviews, 40, 2494-2507(2011).

    [28] Q He, S Sun, L Zhou. Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research, 2019, 1849272(2019).

    [29] C Qu, S Ma, J Hao et al. Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Physical Review Letters, 115, 235503(2015).

    [30] W Yu, Y Lu, X Chen et al. Large-Area, Broadband, Wide-Angle Plasmonic Metasurface Absorber for Midwavelength Infrared Atmospheric Transparency Window. Advanced Optical Materials, 7, 1900841(2019).

    [31] X Pan, H Xu, Y Gao et al. Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. Advanced Optical Materials, 6, 1800337(2018).

    [32] J Hao, J Wang, X Liu et al. High Performance Optical Absorber Based on a Plasmonic Metamaterial. Applied Physics Letters, 96, 251104(2010).

    [33] J B Pendry. Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85, 3966-3969(2000).

    [34] N Garcia, M Nieto-Vesperinas. Left-Handed Materials Do Not Make a Perfect Lens. Physical Review Letters, 88, 207403(2002).

    [35] A Grbic, G V Eleftheriades. Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens. Physical Review Letters, 92, 117403(2004).

    [36] X Pan, H Xu, W Yu et al. Flexible Matesurface-Based Terahertz Super-Absorber. J. Infrared Millim. Waves, 38, 50-54(2019).

    [37] W W Yu, Y Lu, F Peng et al. Localized Surface Plasmon Resonance Based Tunable Dual-Band Absorber within 1-10 Μm. J. Infrared Millim. Waves, 38, 790-797(2019).

    [38] R C McPhedran, I V. Shadrivov, B T Kuhlmey et al. Metamaterials and Metaoptics. NPG Asia Materials, 3, 100-108(2011).

    [39] A A High, R C Devlin, A Dibos et al. Visible-Frequency Hyperbolic Metasurface. Nature, 522, 192-196(2015).

    [40] X Li, H Xu, Z Wen et al. A Robust Equivalent Circuit Model for Magnetic Polaritons in SiC Grooves. Plasmonics(2021).

    [41] J Chen, G Hu, G Cao et al. Manipulating Mode Degeneracy for Tunable Spectral Characteristics in Multi-Microcavity Photonic Molecules. Optics Express, 29, 11181-11193(2021).

    [42] N I Zheludev. The Road Ahead for Metamaterials. Science, 328, 582-583(2010).

    [43] J B Pendry, A J Holden, W J Stewart et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76, 4773-4776(1996).

    [44] J B Pendry, A J Holden, D J Robbins et al. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [45] R A Shelby, D R Smith, S Schultz. Experimental Verification of a Negative Index of Refraction. Science, 292, 77-79(2001).

    [46] N Yu, P Genevet, M a Kats et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334, 333-337(2011).

    [47] S Sun, Q He, S Xiao et al. Gradient-Index Meta-Surfaces as a Bridge Linking Propagating Waves and Surface Waves. Nature Materials, 11, 426-431(2012).

    [48] S Sun, Q He, J Hao et al. Electromagnetic Metasurfaces: Physics and Applications. Advances in Optics and Photonics, 11, 380-479(2019).

    [49] H Herzig Sheinfux, I Kaminer, Y Plotnik et al. Subwavelength Multilayer Dielectrics: Ultrasensitive Transmission and Breakdown of Effective-Medium Theory. Physical Review Letters, 113, 243901(2014).

    [50] S V. Zhukovsky, A Andryieuski, O Takayama et al. Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers. Physical Review Letters, 115, 177402(2015).

    [51] D V. Novitsky, A S Shalin, A Novitsky. Nonlocal Homogenization of PT-Symmetric Multilayered Structures. Physical Review A, 99, 043812(2019).

    [52] M A Gorlach, M Lapine. Boundary Conditions for the Effective-Medium Description of Subwavelength Multilayered Structures. Physical Review B, 101, 075127(2020).

    [53] A Andryieuski, A V. Lavrinenko, S V Zhukovsky. Anomalous Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Photonic Multilayers. Nanotechnology, 26, 184001(2015).

    [54] L Sun, Z Li, T S Luk et al. Nonlocal Effective Medium Analysis in Symmetric Metal-Dielectric Multilayer Metamaterials. Physical Review B, 91, 195147(2015).

    [55] V Popov, A V. Lavrinenko, A Novitsky. Operator Approach to Effective Medium Theory to Overcome a Breakdown of Maxwell Garnett Approximation. Physical Review B, 94, 085428(2016).

    [56] T.C. Choy. Effective Medium Theory:Principles and Applications(2016).

    [57] L Sun, X Yang, J Gao. Analysis of Nonlocal Effective Permittivity and Permeability in Symmetric Metal-Dielectric Multilayer Metamaterials. Journal of Optics, 18, 065101(2016).

    [58] X Lei, L Mao, Y Lu et al. Revisiting the Effective Medium Approximation in All-Dielectric Subwavelength Multilayers: Breakdown and Rebuilding. Physical Review B, 96, 035439(2017).

    [59] G Castaldi, A Alù, V Galdi. Boundary Effects of Weak Nonlocality in Multilayered Dielectric Metamaterials. Physical Review Applied, 10, 034060(2018).

    [60] A Maurel, J J Marigo. Sensitivity of a Dielectric Layered Structure on a Scale below the Periodicity: A Fully Local Homogenized Model. Physical Review B, 98, 024306(2018).

    [61] B H Woo, I C Seo, E Lee et al. Dispersion Control of Excitonic Thin Films for Tailored Superabsorption in the Visible Region. ACS Photonics, 4, 1138-1145(2017).

    [62] P Yeh. Optical Wave in Layered Media(1988).

    [63] Z Wen, H Xu, W Zhao et al. Nonlocal Effective-Medium Theory for Periodic Multilayered Metamaterials. Journal of Optics, 23, 065103(2021).

    [64] J Hao, L Zhou. Electromagnetic Wave Scatterings by Anisotropic Metamaterials: Generalized 4×4 Transfer-Matrix Method. Physical Review B, 77, 094201(2008).

    [65] I Tsukerman. Classical and Non-Classical Effective Medium Theories: New Perspectives. Physics Letters A, 381, 1635-1640(2017).

    [66] S Rytov. Electromagnetic Properties of a Finely Stratified Medium. Sov. Phys. JETP, 2, 466(1956).

    [67] J Elser, V A Podolskiy, I Salakhutdinov et al. Nonlocal Effects in Effective Medium Response of Nanolayered Metamaterials. Applied Physics Letters, 90, 191109(2007).

    [68] A J Abu El-Haija. Effective Medium Approximation for the Effective Optical Constants of a Bilayer and a Multilayer Structure Based on the Characteristic Matrix Technique. Journal of Applied Physics, 93, 2590-2594(2003).

    [69] A V. Chebykin, A A Orlov, A V. Vozianova et al. Nonlocal Effective Medium Model for Multilayered Metal-Dielectric Metamaterials. Physical Review B, 84, 115438(2011).

    [70] A V. Chebykin, A A Orlov, C R Simovski et al. Nonlocal Effective Parameters of Multilayered Metal-Dielectric Metamaterials. Physical Review B, 86, 115420(2012).

    [71] T Dong, J Luo, H Chu et al. Breakdown of Maxwell Garnett Theory Due to Evanescent Fields at Deep-Subwavelength Scale. Photonics Research, 9, 848-855(2021).

    [72] A Kristensen, J K W Yang, S I Bozhevolnyi et al. Plasmonic Colour Generation. Nature Reviews Materials, 2, 1-15(2016).

    [73] P Vukusic, J R Sambles. Photonic Structures in Biology. Nature, 424, 852-855(2003).

    [74] Z Wang, X Wang, S Cong et al. Towards Full-Colour Tunability of Inorganic Electrochromic Devices Using Ultracompact Fabry-Perot Nanocavities. Nature Communications, 11, 302(2020).

    [75] Z Wen, J Lu, W Yu et al. Dynamically Reconfigurable Subwavelength Optical Device for Hydrogen Sulfide Gas Sensing. Photonics Research, 9, 2060-2067(2021).

    [76] A Lochbaum, Y Fedoryshyn, A Dorodnyy et al. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics, 4, 1371-1380(2017).

    [77] Y Gong, Z Wang, K Li et al. Highly Efficient and Broadband Mid-Infrared Metamaterial Thermal Emitter for Optical Gas Sensing. Optics Letters, 42, 4537-4540(2017).

    [78] C W Chen, W C Lin, L S Liao et al. Optical Temperature Sensing Based on the Goos-Hänchen Effect. Applied Optics, 46, 5347-5351(2007).

    [79] N Liu, M Mesch, T Weiss et al. Infrared Perfect Absorber and Its Application as Plasmonic Sensor. Nano Letters, 10, 2342-2348(2010).

    [80] S Yuan, X Qiu, C Cui et al. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. ACS Nano, 11, 10704-10711(2017).

    [81] Z Wang, Z Dong, Y Gu et al. Giant Photoluminescence Enhancement in Tungsten-Diselenide-Gold Plasmonic Hybrid Structures. Nature Communications, 7, 11283(2016).

    [82] Y Zhou, S Chen, X Pan et al. Great Photoluminescence Enhancement in Al-Sputtered Zn 0.78 Mg 0.22 O Films. Optics Letters, 42, 5129-5132(2017).

    [83] X Liu, T Tyler, T Starr et al. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 107, 45901(2011).

    [84] Z Y Yang, S Ishii, T Yokoyama et al. Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons. ACS Photonics, 4, 2212-2219(2017).

    [85] H Liang, J Lai, Z Zhou. Ultra-Narrowband Infrared Thermal Emitter Based on Fabry-Perot-like Vacuum Resonance Cavity. Journal of Optics A: Pure and Applied Optics, 11, 105001(2009).

    [86] M W Tsai, T H Chuang, C Y Meng et al. High Performance Midinfrared Narrow-Band Plasmonic Thermal Emitter. Applied Physics Letters, 89, 173116(2006).

    [87] M M Hossain, M Gu. Radiative Cooling: Principles, Progress, and Potentials. Advanced Science, 3, 1500360(2016).

    [88] T Li, Y Zhai, S He et al. A Radiative Cooling Structural Material. Science, 364, 760-763(2019).

    [89] A P Raman, M A Anoma, L Zhu et al. Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight. Nature, 515, 540-544(2014).

    [90] B Zhao, M Hu, X Ao et al. Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects. Applied Energy, 236, 489-513(2019).

    [91] M Li, D Liu, H Cheng et al. Manipulating Metals for Adaptive Thermal Camouflage. Science Advances, 6, eaba3494(2020).

    [92] L Phan, IV W G Walkup, D D Ordinario et al. Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein. Advanced Materials, 25, 5621-5625(2013).

    [93] S Hong, S Shin, R Chen. An Adaptive and Wearable Thermal Camouflage Device. Advanced Functional Materials, 30, 1909788(2020).

    [94] J H Lee, Y J Kim, Y J Yoo et al. Colored, Covert Infrared Display through Hybrid Planar-Plasmonic Cavities. Advanced Optical Materials, 9, 2100429(2021).

    [95] X Liu, R Li, C Hong et al. Highly Efficient Broadband Photodetectors Based on Lithography-Free Au/Bi2O2Se/Au Heterostructures. Nanoscale, 11, 20707-20714(2019).

    [96] W Li, J Valentine. Metamaterial Perfect Absorber Based Hot Electron Photodetection. Nano Letters, 14, 3510-3514(2014).

    [97] H Im, N Liu, A Bala et al. Large-Area MoS2-MoOx Heterojunction Thin-Film Photodetectors with Wide Spectral Range and Enhanced Photoresponse. APL Materials, 7, 061101(2019).

    [98] X Lu, L Sun, P Jiang et al. Progress of Photodetectors Based on the Photothermoelectric Effect. Advanced Materials, 31, 1902044(2019).

    [99] Z Chen, Y Weng, J Liu et al. Dual-Band Perfect Absorber for a Mid-Infrared Photodetector Based on a Dielectric Metal Metasurface. Photonics Research, 9, 27-33(2021).

    [100] T Guo, Z Liu, Y Jin et al. Large-Scale, Panchromatic Structural Color Manipulation via Thermal Trimming. Advanced Optical Materials, 9, 2101546(2021).

    [101] F Liu, B Q Dong, X H Liu et al. Structural Color Change in Longhorn Beetles Tmesisternus Isabellae. Optics Express, 17, 16183(2009).

    [102] Y Chen, X Duan, M Matuschek et al. Dynamic Color Displays Using Stepwise Cavity Resonators. Nano Letters, 17, 5555-5560(2017).

    [103] P M Resende, R Sanz, O Caballero-Calero et al. Cost-Effective, Flexible, Hydrophobic, and Tunable Structural Color Polymeric Bragg Reflector Metastructures. Advanced Optical Materials, 6, 1800408(2018).

    [104] S D Rezaei, Ng R J Hong, Z Dong et al. Wide-Gamut Plasmonic Color Palettes with Constant Subwavelength Resolution. ACS Nano, 13, 3580-3588(2019).

    [105] M Song, D Wang, S Peana et al. Colors with Plasmonic Nanostructures: A Full-Spectrum Review. Applied Physics Reviews, 6(2019).

    [106] J M Guay, A Calà Lesina, G Killaire et al. Laser-Written Colours on Silver: Optical Effect of Alumina Coating. Nanophotonics, 8, 807-822(2019).

    [107] C Ji, K-T Lee, L J Guo. High-Color-Purity, Angle-Invariant, and Bidirectional Structural Colors Based on Higher-Order Resonances. Optics Letters, 44, 86(2019).

    [108] B Yang, W Liu, Z Li et al. Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. Nano Letters, 19, 4221-4228(2019).

    [109] A C Arsenault, D P Puzzo, I Manners et al. Photonic-Crystal Full-Colour Displays. Nature Photonics, 1, 468-472(2007).

    [110] S Wu, T Liu, B Tang et al. Structural Color Circulation in a Bilayer Photonic Crystal by Increasing the Incident Angle. ACS Applied Materials and Interfaces, 11, 10171-10177(2019).

    [111] H Liu, W Lin, M Hong. Surface Coloring by Laser Irradiation of Solid Substrates. APL Photonics, 4, 051101(2019).

    [112] K T Lee, S Seo, L J Guo. High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers. Advanced Optical Materials, 3, 347-352(2015).

    [113] H Jeong, Y Yang, H Cho et al. Emerging Advanced Metasurfaces: Alternatives to Conventional Bulk Optical Devices. Microelectronic Engineering, 220, 111146(2020).

    [114] C-S Park, I Koirala, S Gao et al. Structural Color Filters Based on an All-Dielectric Metasurface Exploiting Silicon-Rich Silicon Nitride Nanodisks. Optics Express, 27, 667(2019).

    [115] H Pan, Z Wen, Z Tang et al. Wide Gamut, Angle-Insensitive Structural Colors Based on Deep-Subwavelength Bilayer Media. Nanophotonics, 9, 3385-3392(2020).

    [116] Z Li, S Butun, K Aydin. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics, 2, 183-188(2015).

    [117] P Anger, P Bharadwaj, L Novotny. Enhancement and Quenching of Single-Molecule Fluorescence. Physical Review Letters, 96, 113002(2006).

    [118] L Novotny, B Hecht. Principles of Nano-Optics(2006).

    [119] B Peng, Z Li, E Mutlugun et al. Quantum Dots on Vertically Aligned Gold Nanorod Monolayer: Plasmon Enhanced Fluorescence. Nanoscale, 6, 5592-5598(2014).

    [120] P P Pompa, L Martiradonna, A Della Torre et al. Metal-Enhanced Fluorescence of Colloidal Nanocrystals with Nanoscale Control. Nature Nanotechnology, 1, 126-130(2006).

    [121] L Peng, X Wang, I Coropceanu et al. Titanium Nitride Modified Photoluminescence from Single Semiconductor Nanoplatelets. Advanced Functional Materials, 30, 1904179(2020).

    [122] V Caligiuri, M Palei, M Imran et al. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement. ACS Photonics, 5, 2287-2294(2018).

    [123] M Nyman, A Shevchenko, I Shavrin et al. Large-Area Enhancement of Far-Field Fluorescence Intensity Using Planar Nanostructures. APL Photonics, 4, 076101(2019).

    [124] L Yang, L Li, Q Wang et al. Over 1000-Fold Enhancement of the Unidirectional Photoluminescence from a Microsphere-Cavity-Array-Capped QD/PDMS Composite Film for Flexible Lighting and Displays. Advanced Optical Materials, 7, 1901228(2019).

    [125] W Zhao, Z Wen, Z Zhou et al. Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-Subwavelength Bilayer Media. Chinese Journal of Luminescence, 42, 1403-1411(2021).

    [126] W Zhao, X Tian, Z Fang et al. Engineering Single-Molecule Fluorescence with Asymmetric Nano-Antennas. Light: Science and Applications, 10, 79(2021).

    [127] L Zhu, S Yuan, C Zeng et al. Manipulating Photoluminescence of Carbon G-Center in Silicon Metasurface with Optical Bound States in the Continuum. Advanced Optical Materials, 8, 1901830(2020).

    [128] V Caligiuri, G Biffi, M Palei et al. Angle and Polarization Selective Spontaneous Emission in Dye-Doped Metal/Insulator/Metal Nanocavities. Advanced Optical Materials, 8, 1901215(2020).

    [129] H N S Krishnamoorthy, Z Jacob, E Narimanov et al. Topological Transitions in Metamaterials. Science, 336, 205-210(2012).

    [130] W Zhao, Z Wen, Q Xu et al. Remarkable Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Assisted by Metallic Thin Films. Nanophotonics, 10, 2257-2264(2021).

    [131] A Lenert, D M Bierman, Y Nam et al. A Nanophotonic Solar Thermophotovoltaic Device. Nature Nanotechnology, 9, 126-130(2014).

    [132] M De Zoysa, T Asano, K Mochizuki et al. Conversion of Broadband to Narrowband Thermal Emission through Energy Recycling. Nature Photonics, 6, 535-539(2012).

    [133] J A Schuller, T Taubner, M L Brongersma. Optical Antenna Thermal Emitters. Nature Photonics, 3, 658-661(2009).

    [134] T Kosako, Y Kadoya, H F Hofmann. Directional Control of Light by a Nano-Optical Yagi-Uda Antenna. Nature Photonics, 4, 312-315(2010).

    [135] L Novotny, N Van Hulst. Antennas for Light. Nature Photonics, 5, 83-90(2011).

    [136] N Gaponik, I L Radtchenko, M R Gerstenberger et al. Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals. Nano Letters, 3, 369-372(2003).

    [137] M Matuschek, D P Singh, H Jeong et al. Chiral Plasmonic Hydrogen Sensors. Small, 14, 1702990(2017).

    [138] W Li, Y Shi, Z Chen et al. Photonic Thermal Management of Coloured Objects. Nature Communications, 9, 4240(2018).

    [139] A A Bergh, P J Dean. Light-Emitting Diodes. Proceedings of the IEEE, 60, 156-223(1972).

    [140] J Faist, F Capasso, D L Sivco et al. Quantum Cascade Laser. Science, 264, 553-556(1994).

    [141] W Streyer, K Feng, Y Zhong et al. Selective Absorbers and Thermal Emitters for Far-Infrared Wavelengths. Applied Physics Letters, 107, 081105(2015).

    [142] D Costantini, A Lefebvre, A L Coutrot et al. Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission. Physical Review Applied, 4, 014023(2015).

    [143] M Makhsiyan, P Bouchon, J Jaeck et al. Shaping the Spatial and Spectral Emissivity at the Diffraction Limit. Applied Physics Letters, 107, 251103(2015).

    [144] I Celanovic, D Perreault, J Kassakian. Resonant-Cavity Enhanced Thermal Emission. Physical Review B, 72, 75127(2005).

    [145] B J Lee, C J Fu, Z M Zhang. Coherent Thermal Emission from One-Dimensional Photonic Crystals. Applied Physics Letters, 87, 071904(2005).

    [146] P Ben-Abdallah, B Ni. Single-Defect Bragg Stacks for High-Power Narrow-Band Thermal Emission. Journal of Applied Physics, 97, 104910(2005).

    [147] T Inoue, M De Zoysa, T Asano et al. Realization of Narrowband Thermal Emission with Optical Nanostructures. Optica, 2, 27-35(2015).

    [148] X Liu, Z Li, Z Wen et al. Large-Area, Lithography-Free, Narrow-Band and Highly Directional Thermal Emitter. Nanoscale, 11, 19742-19750(2019).

    [149] A Sakurai, K Yada, T Simomura et al. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 5, 319-326(2019).

    [150] J Botros, M O Ali, R N Tait et al. Direct Thermal Emission Testing of Aperiodic Dielectric Stack for Narrowband Thermal Emission at Mid-IR. Journal of Applied Physics, 127, 114502(2020).

    [151] M He, J R Nolen, J Nordlander et al. Deterministic Inverse Design of Tamm Plasmon Thermal Emitters with Multi-Resonant Control. Nature Materials(2021).

    [152] M A Kats, R Blanchard, S Zhang et al. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance. Physical Review X, 3, 041004(2014).

    [153] M J Moghimi, G Lin, H Jiang. Broadband and Ultrathin Infrared Stealth Sheets. Advanced Engineering Materials, 20, 1800038(2018).

    [154] S Chandra, D Franklin, J Cozart et al. Adaptive Multispectral Infrared Camouflage. ACS Photonics, 5, 4513-4519(2018).

    [155] R Hu, W Xi, Y Liu et al. Thermal Camouflaging Metamaterials. Materials Today, 45, 120-141(2021).

    [156] X Ruan, W Dai, W Wang et al. Ultrathin, Broadband, Omnidirectional, and Polarization-Independent Infrared Absorber Using All-Dielectric Refractory Materials. Nanophotonics, 10, 1683-1690(2021).

    [157] N Lee, B Yoon, T Kim et al. Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation. ACS Applied Materials and Interfaces, 12, 8862-8869(2020).

    [158] J Kim, K Han, J W Hahn. Selective Dual-Band Metamaterial Perfect Absorber for Infrared Stealth Technology. Scientific Reports, 7, 6740(2017).

    [159] T Han, X Bai, J T L Thong et al. Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials. Advanced Materials, 26, 1731-1734(2014).

    [160] Z Li, W Chen. Progress in Dynamic Emissivity Regulation: Control Methods, Material Systems, and Applications. Materials Chemistry Frontiers, 5, 6315-6332(2021).

    [161] Y Chang, Y Wang, W Wang et al. Highly Efficient Infrared Stealth Asymmetric-Structure Waterborne Polyurethane Composites Prepared via One-Step Density-Driven Filler Separation Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 614, 126177(2021).

    [162] J Zhang, R Wei, M ElKabbash et al. Thin-Film Perfect Infrared Absorbers over Single- and Dual-Band Atmospheric Windows. Optics Letters, 45, 2800-2803(2020).

    [163] L Wang, Y Yang, X Tang et al. Combined Multi-Band Infrared Camouflage and Thermal Management via a Simple Multilayer Structure Design. Optics Letters, 46, 5224-5227(2021).

    [164] G J Lee, D H Kim, S Y Heo et al. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics. ACS Applied Materials and Interfaces, 12, 53206-53214(2020).

    [165] E Buhara, A Ghobadi, E Ozbay. Adaptive Visible and Short-Wave Infrared Camouflage Using a Dynamically Tunable Metasurface. Optics Letters, 46, 4777-4780(2021).

    [166] L Peng, D Liu, H Cheng et al. A Multilayer Film Based Selective Thermal Emitter for Infrared Stealth Technology. Advanced Optical Materials, 6, 1801006(2018).

    [167] L Li, M Shi, X Liu et al. Ultrathin Titanium Carbide (MXene) Films for High-Temperature Thermal Camouflage. Advanced Functional Materials, 31, 2101381(2021).

    [168] C Wang, Y Yao, Z Wen et al. Antireflection Coating for Epitaxial Blocked Impurity Band Detector. J. Infrared Millim. Waves, 40, 459-464(2021).

    [169] A R Davoyan, J N Munday, N Tabiryan et al. Photonic Materials for Interstellar Solar Sailing. Optica, 8, 722-734(2021).

    [170] Y-T Yoon, S-S Lee. Transmission Type Color Filter Incorporating a Silver Film Based Etalon. Optics Express, 18, 5344-5349(2010).

    [171] S Collin. Nanostructure Arrays in Free-Space: Optical Properties and Applications. Reports on Progress in Physics, 77, 126402(2014).

    [172] R Heenkenda, K Hirakawa, A Sarangan. Tunable Optical Filter Using Phase Change Materials for Smart IR Night Vision Applications. Optics Express, 29, 33795-33803(2021).

    [173] A Ghobadi, T G Ulusoy Ghobadi, F Karadas et al. Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7, 1900028(2019).

    [174] P Berini. Surface Plasmon Photodetectors and Their Applications. Laser and Photonics Reviews, 8, 197-220(2014).

    [175] Y Wang, J Yu, Y F Mao et al. Stable, High-Performance Sodium-Based Plasmonic Devices in the near Infrared. Nature, 581, 401-405(2020).

    [176] M M Ito, A H Gibbons, D Qin et al. Structural Colour Using Organized Microfibrillation in Glassy Polymer Films. Nature, 570, 363-367(2019).

    [177] J Kim, S Baek, J Y Park et al. Photonic Multilayer Structure Induced High Near-Infrared (NIR) Blockage as Energy-Saving Window. Small, 17, 2100654(2021).

    Zheng-Ji WEN, Xiao-Wen LI, Wen-Chao ZHAO, Yan SUN, Jia-Ming HAO, Ning DAI, Jun-Hao CHU. Subwavelength thin-film stack metamaterials:theory and applications[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021348
    Download Citation