• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 1, 125 (2008)
ZHIJIA YUAN1、*, HUGANG REN1, WAYNE WALTZER2, JASON KIM2, JINGXUAN LIU3, KEMIAO JIA4, HUIKAI XIE4, and YINGTIAN PAN1
Author Affiliations
  • 1Departments of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
  • 2Urology, Stony Brook University, Stony Brook, NY, USA
  • 3Pathology Stony Brook University, Stony Brook, NY, USA
  • 4The ECE Department, University of Florida, Gainesville, FL, USA
  • show less
    DOI: Cite this Article
    ZHIJIA YUAN, HUGANG REN, WAYNE WALTZER, JASON KIM, JINGXUAN LIU, KEMIAO JIA, HUIKAI XIE, YINGTIAN PAN. OPTICAL COHERENCE TOMOGRAPHY FOR BLADDER CANCER DIAGNOSIS: FROM ANIMAL STUDY TO CLINICAL DIAGNOSIS[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 125 Copy Citation Text show less
    References

    [1] American Cancer Society, Cancer Facts & Figures 2007. http://www.cancer.org/ downloads/STT/CAFF2007PWSecured.pdf, 2007.

    [2] M. Kriegmair et al., Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence, Journal of Urology 155(1), 105–109 (1996).

    [3] D. Zaak et al., Quantification of 5-aminolevulinic acid induced fluorescence improves the specificity of bladder cancer detection, Journal of Urology 166(5), 1665–1668 (2001).

    [4] D. Huang et al., Optical Coherence Tomography, Science 254(5035), 1178–1181 (1991).

    [5] R. A. Leitgeb et al., Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography, Optics Letters 29(2), 171–173 (2004).

    [6] B. J. Vakoc et al., Phase-resolved optical frequency domain imaging, Optics Express, 13(14), 5483–5493 (2005).

    [7] M. Wojtkowski et al., Three-dimensional retinal imaging with high-speed ultrahighresolution optical coherence tomography, Ophthalmology, 112(10), 1734–1746 (2005).

    [8] Z. P. Chen et al., Optical Doppler tomography, Ieee Journal of Selected Topics in Quantum Electronics 5(4), 1134–1142 (1999).

    [9] S. Yazdanfar, M. D. Kulkarni and J. A. Izatt, High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography, Optics Express 1(13), 424–431 (1997).

    [10] J. F. de Boer et al., Imaging thermally damaged tissue by polarization sensitive optical coherence tomography, Optics Express 3(6), 212–218 (1998).

    [11] U. Morgner et al., Spectroscopic optical coherence tomography, Optics Letters 25(2), 111–113 (2000).

    [12] X. D. Wang and L. H. V. Wang, Propagation of polarized light in birefringent turbid media: A Monte Carlo study, Journal of Biomedical Optics 7(3), 279–290 (2002).

    [13] B. Bouma et al., High-resolution optical coherence tomographic imaging using a modelocked Ti-Al2o3 laser source, Optics Letters 20(13) (1995) 1486–1488.

    [14] S. A. Boppart et al., In vivo cellular optical coherence tomography imaging, Nature Medicine 4(7), 861–865 (1998).

    [15] W. Drexler, Ultrahigh-resolution optical coherence tomography, Journal of Biomedical Optics 9(1), 47–74 (2004).

    [16] S. Tang et al., Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy, Optics Letters 32(5), 503–505 (2007).

    [17] G. J. Tearney et al., In vivo endoscopic optical biopsy with optical coherence tomography, Science 276(5321), 2037–2039, (1997).

    [18] Y.-T. Pan and D. L. Farkas, Dual-color, 3-D imaging of biological tissues using optical coherence tomography, Journal of Biomedical Optics 3(4), 446–455 (1998).

    [19] F. I. Feldchtein et al., In vivo OCT imaging of hard and soft tissue of the oral cavity, Optics Express 3(6), 239–250 (1998).

    [20] J. A. Izatt et al., Optical coherence tomography and microscopy in gastrointestinal tissues. Ieee Journal of Selected Topics in Quantum Electronics 2(4), 1017–1028, (1996).

    [21] A. M. Sergeev et al., In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa, Optics Express 1(13), 432–440 (1997).

    [22] N. Mikhail-Hanna et al., Optical coherence tomography of the lung and lower airway, Chest 124(4), 77s–77s, (2003).

    [23] E. V. Zagaynova et al., In vivo optical coherence tomography feasibility for bladder disease, Journal of Urology 167(3), 1492–1496 (2002).

    [24] Y. T. Pan et al., Detection of tumorigenesis in rat bladders with optical coherence tomography, Medical Physics, 28(12), 2432–2440 (2001).

    [25] T. Q. Xie, M. L. Zeidel and Y. T. Pan, Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes, Optics Express 10(24), 1431–1443 (2002).

    [26] P. F. Escobar et al., Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva, International Journal of Gynecological Cancer 14(3), 470–474 (2004).

    [27] M. E. Brezinski et al., Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound, Heart 77(5), 397–403 (1997).

    [28] B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., 2002).

    [29] G. Hausler and W. M. Lindner, “Coherence Radar” and “Spectral Radar”–New Tools for Dermatological Diagnosis, Journal Of Biomedical Optics 3(1), 21–31 (1998).

    [30] G. J. Tearney, B. E. Bouma and J. G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line, Optics Letters 22(23), 1811 (1997).

    [31] T. Q. Xie, Z. G. Wang and Y. T. Pan, High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation, Optics Express, 11(24), 3210 (2003).

    [32] W. Jung et al., Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror, Applied Physics Letters, 88(16) (2006).

    [33] Y. T. Pan, H. K. Xie and G. K. Fedder, Endoscopic optical coherence tomography based on a microelectromechanical mirror, Optics Letters 26(24), 1966–1968 (2001).

    [34] H. Toshiyoshi et al., Linearization of electrostatically actuated surface micromachined 2-D optical scanner, Journal of Microelectromechanical Systems 10(2), 205–214 (2001).

    [35] A. D. Aguirre et al., Two-axis MEMS scanning catheter for ultrahigh resolution threedimensional and en face imaging, Optics Express 15(5), 2445–2453, (2007).

    [36] T. Q. Xie et al., Endoscopic optical coherence tomography with new MEMS mirror, Electronics Letters 39(21), 1535–1536 (2003).

    [37] Y. T. Pan et al., Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography, Optics Letters 28(24), 2485–2487, (2003).

    [38] Z. G.Wang et al., Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model, Journal of Urology 174(6), 2376–2381 (2005).

    [39] Z. G. Wang et al., In vivo bladder imaging with microelectromechanical systemsbased endoscopic spectral domain optical coherence tomography, Journal of Biomedical Optics 12(3), (2007).

    [40] Y. T. Pan et al., Subcellular imaging of epithelium with time-lapse optical coherence tomography, Journal of Biomedical Optics 12(5) (2007).

    [41] Z. Yuan, Z. Wang and Y. Pan, High-resolution imaging diagnosis and staging of bladder cancer: A comparison between optical coherence tomography and high-frequency ultrasound. Journal of Biomedical Optics, accepted, (2008).

    ZHIJIA YUAN, HUGANG REN, WAYNE WALTZER, JASON KIM, JINGXUAN LIU, KEMIAO JIA, HUIKAI XIE, YINGTIAN PAN. OPTICAL COHERENCE TOMOGRAPHY FOR BLADDER CANCER DIAGNOSIS: FROM ANIMAL STUDY TO CLINICAL DIAGNOSIS[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 125
    Download Citation