• Laser & Optoelectronics Progress
  • Vol. 56, Issue 15, 152501 (2019)
Haojie Hou1, Junyan Liu1、2, Bowen Xiao2, Mingqi Zhu2, and Mengchun Li2、*
Author Affiliations
  • 1 Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan, Shanxi 0 30024, China
  • 2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 0 30024, China
  • show less
    DOI: 10.3788/LOP56.152501 Cite this Article Set citation alerts
    Haojie Hou, Junyan Liu, Bowen Xiao, Mingqi Zhu, Mengchun Li. Formation of Orthogonal and Parallel Surface-Lattice Resonances with Asymmetric Nanoparticle Array[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152501 Copy Citation Text show less
    References

    [1] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003). http://onlinelibrary.wiley.com/doi/10.1002/chin.200316243/full

    [2] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010). http://www.worldscientific.com/doi/abs/10.1142/9789814317665_0001?mi=6c98ks&af=R&Contrib=Polman%2C+A&content=articlesChapters&countTerms=true&target=default

    [3] Fu Y H, Zhang J B, Yu Y F et al. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures[J]. ACS Nano, 6, 5130-5137(2012). http://pubs.acs.org/doi/abs/10.1021/nn3007898

    [4] Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 38, 0328006(2018).

    [5] Kessentini S, Barchiesi D. D’Andrea C, et al. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS[J]. The Journal of Physical Chemistry C, 118, 3209-3219(2014). http://pubs.acs.org/doi/pdf/10.1021/jp409844y

    [6] Shi Z D, Zhao H F, Liu J L et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 35, 0213001(2015).

    [7] Lin R, Qian W C, Shang Y P et al. Dual-channel all-optical switch based on plasmonic demultiplexer structure[J]. Laser & Optoelectronics Progress, 55, 022401(2018).

    [8] Liu F, Zhang K L. Fano resonances in metallic nanorod oligomer with transverse excitation[J]. Laser & Optoelectronics Progress, 56, 012501(2019).

    [9] Huang Y H, Xue B P. Research of mutiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 52, 062401(2015).

    [10] Liu R, Shi J H, Plum E et al. Tuning Fano resonances in a planar metamaterial[J]. Acta Physica Sinica, 61, 154101(2012).

    [11] Guo R, Hakala T K, Törmä P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays[J]. Physical Review B, 95, 155423(2017). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.155423

    [12] Auguié B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 101, 143902(2008). http://europepmc.org/abstract/MED/18851529

    [13] Gao H. McMahon J M, Lee M H, et al. Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays[J]. Optics Express, 17, 2334-2340(2009). http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-4-2334

    [14] Zou S L, Janel N, Schatz G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J]. The Journal of Chemical Physics, 120, 10871-10875(2004). http://europepmc.org/abstract/MED/15268116

    [15] Zou S L, Schatz G C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays[J]. The Journal of Chemical Physics, 121, 12606-12612(2004). http://www.ncbi.nlm.nih.gov/pubmed/15606284

    [16] Chu Y Z, Schonbrun E, Yang T et al. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Applied Physics Letters, 93, 181108(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4835307

    [17] Vecchi G, Giannini V, Gómez Rivas J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas[J]. Physical Review Letters, 102, 146807(2009). http://europepmc.org/abstract/med/19392471

    [18] Kravets V G, Schedin F, Kabashin A V et al. Sensitivity of collective plasmon modes of gold nanoresonators to local environment[J]. Optics Letters, 35, 956-958(2010). http://www.ncbi.nlm.nih.gov/pubmed/20364182/

    [19] Kravets V G, Schedin F, Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles[J]. Physical Review Letters, 101, 087403(2008). http://europepmc.org/abstract/MED/18764660

    [20] Baur S, Sanders S, Manjavacas A. Hybridization of lattice resonances[J]. ACS Nano, 12, 1618-1629(2018).

    [21] Wang D Q, Yang A K, Hryn A J et al. Superlattice plasmons in hierarchical Au nanoparticle arrays[J]. ACS Photonics, 2, 1789-1794(2015). http://pubs.acs.org/doi/10.1021/acsphotonics.5b00546

    [22] Humphrey A D, Meinzer N, Starkey T A et al. Surface lattice resonances in plasmonic arrays of asymmetric disc dimers[J]. ACS Photonics, 3, 634-639(2016). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00727

    [23] Lee S C. Brueck S R J. Plasmonic interference in superstructured metal photonic crystals[J]. ACS Photonics, 4, 2396-2401(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.7b00367

    [24] Wang D Q, Yang A K, Wang W J et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices[J]. Nature Nanotechnology, 12, 889-894(2017). http://europepmc.org/abstract/MED/28692060

    [25] Vecchi G, Giannini V. 80(20):. 201401(R).(2009).

    [26] Lin L H, Zheng Y B. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability[J]. Optics Letters, 40, 2060-2063(2015). http://www.opticsinfobase.org/abstract.cfm?uri=ol-40-9-2060

    [27] Lin L H, Zheng Y B. Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors[J]. Nanoscale, 7, 12205-12214(2015). http://www.ncbi.nlm.nih.gov/pubmed/26133011

    [28] Vitrey A, Aigouy L, Prieto P et al. Parallel collective resonances in arrays of gold nanorods[J]. Nano Letters, 14, 2079-2085(2014). http://pubs.acs.org/doi/abs/10.1021/nl500238h

    [29] Liu S D, Qi X, Zhai W C et al. Polarization state-based refractive index sensing with plasmonic nanostructures[J]. Nanoscale, 7, 20171-20179(2015). http://europepmc.org/abstract/MED/26607673

    [30] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972). http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1080%2F09205071.2017.1404940&key=10.1103%2FPhysRevB.6.4370

    Haojie Hou, Junyan Liu, Bowen Xiao, Mingqi Zhu, Mengchun Li. Formation of Orthogonal and Parallel Surface-Lattice Resonances with Asymmetric Nanoparticle Array[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152501
    Download Citation