• Photonics Research
  • Vol. 9, Issue 4, 541 (2021)
Yitong Wu1、2、3, Liangliang Ji1、3、5、*, and Ruxin Li1、3、4、6、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 4ShanghaiTech University, Shanghai 201210, China
  • 5e-mail: jill@siom.ac.cn
  • 6e-mail: ruxinli@mail.siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.416555 Cite this Article Set citation alerts
    Yitong Wu, Liangliang Ji, Ruxin Li. On the upper limit of laser intensity attainable in nonideal vacuum[J]. Photonics Research, 2021, 9(4): 541 Copy Citation Text show less
    References

    [1] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447-449(1985).

    [2] S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, V. Yanovsky. Generation and characterization of the highest laser intensities (1022  W/cm2). Opt. Lett., 29, 2837-2839(2004).

    [3] V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick. Ultra-high intensity-high contrast 300-TW laser at 0.1  Hz repetition rate. Ultrafast Phenomena XVI, 750-752(2009).

    [4] . Extreme Light Infrastructure (ELI).

    [5] Z. Guo, L. Yu, J. Wang, C. Wang, Y. Liu, Z. Gan, W. Li, Y. Leng, X. Liang, R. Li. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti:sapphire chirped pulse amplification laser system. Opt Express, 26, 26776-26786(2018).

    [6] N. V. Zamfir. Extreme light infrastructure–nuclear physics (ELI-NP) European Research Centre. EPJ Web Conf., 66, 11043(2014).

    [7] G. Grittani, C. Lazzarini, S. Lorenz, M. Nevrkla, L. Vilanova, S. V. Bulanov, G. Korn. ELI-ELBA: fundamental science investigations with high power lasers at ELI-beamlines. High Intensity Lasers and High Field Phenomena(2020).

    [8] D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Cheriaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Freneaux. The Apollon 10  PW laser: experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng., 4, e34(2016).

    [9] C. Hernandez-Gomez, S. P. Blake, O. Chekhlov, R. J. Clarke, A. M. Dunne, M. Galimberti, S. Hancock, R. Heathcote, P. Holligan, A. Lyachev. The Vulcan 10  PW project. J. Phys. Conf. Ser., 244, 032006(2010).

    [10] R. Li. Progress of the SULF 10  PW laser project. 1st AAPPS-DPP Meeting(2017).

    [11] D. D. Meyerhofer, S. W. Bahk, J. Bromage, D. H. Froula, D. Haberberger, S. X. Hu, B. E. Kruschwitz, R. L. McCrory, J. F. Myatt, P. M. Nilson, J. B. Oliver, C. Stoeckl, W. Theobald, L. J. Waxer, J. D. Zuegel. OMEGA EP OPAL: a path to a 100-PW laser system. Meeting of the APS Division of Plasma Physics American Physical Society(2014).

    [12] B. Shao, Y. Li, Y. Peng, P. Wang, J. Qian, Y. Leng, R. Li. Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100  PW lasers. Opt. Lett., 45, 2215-2218(2020).

    [13] National Academies. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light(2018).

    [14] G. A. Mourou, N. J. Fisch, V. M. Malkin, Z. Toroker, E. A. Khazano, A. M. Sergeev, T. Tajima, B. Le Garrec. Exawatt-zettawatt pulse generation and applications. Opt. Commun., 285, 720-724(2012).

    [15] G. A. Mourou, T. Tajima. More intense, shorter pulses. Science, 331, 41-42(2011).

    [16] T. Tajima, G. A. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Spec. Top. Accel. Beams, 5, 031301(2002).

    [17] J. P. Palastro, J. L. Shaw, P. Franke, D. Ramsey, T. T. Simpson, D. H. Froula. Dephasingless laser wakefield acceleration. Phys. Rev. Lett., 124, 134802(2020).

    [18] J. Schreiber, P. R. Bolton, K. Parodi. Invited review article: “hands-on” laser-driven ion acceleration: a primer for laser-driven source development and potential applications. Rev. Sci. Instrum., 87, 071101(2016).

    [19] B. F. Shen, Y. Li, M. Y. Yu, J. Cary. Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E, 76, 055402(2007).

    [20] L. Yin, B. J. Albright, B. M. Hegelich, K. J. Bowers, K. A. Flippo, T. J. T. Kwan, J. C. Fernandez. Monoenergetic and GeV ion acceleration from the laser breakout after burner using ultrathin targets. Phys. Plasmas, 14, 056706(2007).

    [21] N. V. Zamfir. Nuclear physics with 10  PW laser beams at extreme light infrastructure–nuclear physics (ELI-NP). Eur. Phys. J. Spec. Top., 223, 1221-1227(2014).

    [22] S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, I. Andrei, S. Ataman, M. O. Cernaianu, L. D’Alessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng, N. V. Zamfir. The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10  PW ultra-intense lasers and 20  MeV brilliant gamma beams. Rep. Prog. Phys., 81, 094301(2018).

    [23] D. L. Balabanski, R. Popescu, D. Stutman, K. A. Tanaka, O. Tesileanu, C. A. Ur, D. Ursescu, N. V. Zamfir. New light in nuclear physics: the extreme light infrastructure. Europhys. Lett., 117, 28001(2017).

    [24] B. A. Remington, D. Arnett, R. P. Drake, H. Takabe. Modeling astrophysical phenomena in the laboratory with intense lasers. Science, 284, 1488-1493(1999).

    [25] D. R. Farley, K. G. Estabrook, S. G. Glendinning, S. H. Glenzer, B. A. Remington, K. Shigemori, J. M. Stone, R. J. Wallace, G. B. Zimmerman, J. A. Harte. Radiative jet experiments of astrophysical interest using intense lasers. Phys. Rev. Lett., 83, 1982-1985(1999).

    [26] B. A. Remington, R. P. Drake, D. D. Ryutov. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys., 78, 755-807(2006).

    [27] F. V. Hartemann, A. K. Kerman. Classical theory of nonlinear Compton scattering. Phys. Rev. Lett., 76, 624-627(1996).

    [28] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel. Strong signatures of radiation reaction below the radiation-dominated regime. Phys. Rev. Lett., 102, 254802(2009).

    [29] G. Lehmann, K. H. Spatschek. Energy gain of an electron by a laser pulse in the presence of radiation reaction. Phys. Rev. E, 84, 046409(2011).

    [30] M. Tamburini, T. V. Liseykina, F. Pegoraro, A. Macchi. Radiation-pressure-dominant acceleration: polarization and radiation reaction effects and energy increase in three-dimensional simulations. Phys. Rev. E, 85, 016407(2012).

    [31] M. Chen, E. Esarey, C. G. R. Geddes, C. B. Schroeder, G. R. Plateau, S. S. Bulanov, S. Rykovanov, W. P. Leemans. Modeling classical and quantum radiation from laser-plasma accelerators. Phys. Rev. Spec. Top. Accel. Beams, 16, 030701(2013).

    [32] M. Vranic, J. L. Martins, J. Vieira, R. A. Fonseca, L. O. Silva. All-optical radiation reaction at 1021  W/cm2. Phys. Rev. Lett., 113, 134801(2014).

    [33] L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, K. Akli. Radiation-reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett., 112, 145003(2014).

    [34] A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, A. Sergeev. Anomalous radiative trapping in laser fields of extreme intensity. Phys. Rev. Lett., 113, 014801(2014).

    [35] A. I. Nikishov, V. I. Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys. JETP, 19, 529-541(1964).

    [36] V. N. Baier, V. M. Katkov, V. S. Fadin. Radiation of Relativistic Electrons(1973).

    [37] V. Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497-617(1985).

    [38] A. D. Piazza, C. Müller, K. Z. Hatsagortsyan, C. H. Keitel. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).

    [39] G. Breit, J. A. Wheeler. Collision of two light quanta. Phys. Rev., 46, 1087-1091(1934).

    [40] H. R. Reiss. Absorption of light by light. J. Math. Phys., 3, 59-67(1962).

    [41] D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett., 79, 1626-1629(1997).

    [42] A. R. Bell, G. K. John. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett., 101, 200403(2008).

    [43] G. K. John, A. R. Bell, I. Arka. Pair production in counter-propagating laser beams. Plasma Phys. Control. Fusion, 51, 085008(2009).

    [44] A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn. Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett., 105, 080402(2010).

    [45] N. V. Elkina, A. M. Fedotov, I. Y. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, H. Ruhl. QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top. Accel. Beams, 14, 054401(2011).

    [46] E. N. Nerush, I. Y. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, H. Ruhl. Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett., 106, 035001(2011).

    [47] C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, A. R. Bell. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [48] S. S. Bulanov, C. B. Schroeder, E. Esarey, W. P. Leemans. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A, 87, 062110(2013).

    [49] S. Tang, M. A. Bake, H. Y. Wang, B. S. Xie. QED cascade induced by a high-energy γ photon in a strong laser field. Phys. Rev. A, 89, 022105(2014).

    [50] X.-L. Zhu, T.-P. Yu, Z.-M. Sheng, Y. Yin, I. C. E. Turcu, A. Pukhov. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun., 7, 13686(2016).

    [51] M. Jirka, O. Klimo, M. Vranic, S. Weber, G. Korn. QED cascade with 10  PW-class lasers. Sci. Rep., 7, 15302(2017).

    [52] V. F. Bashmakov, E. N. Nerush, I. Y. Kostyukov, A. M. Fedotov, N. B. Narozhny. Effect of laser polarization on quantum electrodynamical cascading. Phys. Plasmas, 21, 013105(2014).

    [53] M. Tamburini, A. D. Piazza, C. H. Keitel. Laser-pulse-shape control of seeded QED cascades. Sci. Rep., 7, 5694(2017).

    [54] A. Sampath, M. Tamburini. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects. Phys. Plasmas, 25, 083104(2018).

    [55] W. Luo, W.-Y. Liu, T. Yuan, M. Chen, J.-Y. Yu, F.-Y. Li, D. D. Sorbo, C. P. Ridgers, Z.-M. Sheng. QED cascade saturation in extreme high fields. Sci. Rep., 8, 8400(2018).

    [56] American Association. So much more to know…. Science, 309, 78-102(2005).

    [57] J. Schwinger. Particles, Sources, and Fields(1988).

    [58] A. M. Fedotov. Electron-positron pair creation by a strong tightly focused laser field. Laser Phys., 19, 214-221(2009).

    [59] S. S. Bulanov, N. B. Narozhny, V. D. Mur, V. S. Popov. Electron-positron pair production by electromagnetic pulses. J. Exp. Theor. Phys., 102, 9-23(2006).

    [60] A. Pukhov. Particle-in-cell codes for plasma-based particle acceleration(2016).

    [61] J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev., 82, 664-679(1951).

    [62] I. V. Sokolov, N. M. Naumova, J. A. Nees. Numerical modeling of radiation-dominated and QED-strong regimes of laser-plasma interaction. Phys. Plasmas, 18, 093109(2011).

    [63] E. Wallin, A. Gonoskov, M. Marklund. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations. Phys. Plasmas, 22, 033117(2015).

    [64] E. Cartlidge. Physicists are planning to build lasers so powerful they could rip apart empty space(2018).

    Yitong Wu, Liangliang Ji, Ruxin Li. On the upper limit of laser intensity attainable in nonideal vacuum[J]. Photonics Research, 2021, 9(4): 541
    Download Citation