• Journal of Semiconductors
  • Vol. 40, Issue 4, 041901 (2019)
Haizhen Wang1、2, Chen Fang1, Hongmei Luo2, and Dehui Li1
Author Affiliations
  • 1School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, United States of America
  • show less
    DOI: 10.1088/1674-4926/40/4/041901 Cite this Article
    Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites[J]. Journal of Semiconductors, 2019, 40(4): 041901 Copy Citation Text show less
    References

    [1] C Moure, O Peña. Recent advances in perovskites: processing and properties. Prog Solid State Chem, 43, 123(2015).

    [2] S Mtougui, R Khalladi, S Ziti et al. Magnetic properties of the perovskite BiFeO3: Monte Carlo simulation. Superlattice Microstruct, 123, 111(2018).

    [3] C Li, X Lu, W Ding et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallograph B, 64, 702(2008).

    [4] A S Bhalla, R Guo, R Roy. The perovskite structure—a review of its role in ceramic science and technology. Mater Res Innov, 4, 3(2016).

    [5] W Li, Z Wang, F Deschler et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat Rev Mater, 2, 16099(2017).

    [6] B Saparov, D Mitzi. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 116, 4558(2016).

    [7] T M Brenner, D A Egger, L Kronik et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 1, 15007(2016).

    [8]

    [9] H J Snaith. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Am Chem Soc, 4, 3623(2013).

    [10] M Grätzel. The light and shade of perovskite solar cells. Nat Mater, 13, 838(2014).

    [11] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [12] D Shi, V Adinolfi, R Comin et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).

    [13] J S Shaikh, N S Shaikh, A D Sheikh et al. Perovskite solar cells: In pursuit of efficiency and stability. Mater Des, 136, 54(2017).

    [14] M B Johnston, L M Herz. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Accounts Chem Res, 49, 146(2015).

    [15]

    [16] K A Bush, S Manzoor, K Frohna et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett, 3, 2173(2018).

    [17] P Wangyang, C Gong, G Rao et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv Opt Mater, 6, 1701302(2018).

    [18] L Shen, Y Fang, D Wang et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv Mater, 28, 10794(2016).

    [19] R Dong, Y Fang, J Chae et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 27, 1912(2015).

    [20] Y Fang, Q Dong, Y Shao et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photon, 9, 679(2015).

    [21] G Xing, N Mathews, S S Lim et al. Low-temperature solution-processed wavelength tunable perovskites for lasing. Nat Mater, 13, 476(2014).

    [22] Z Yuan, C Zhou, Y Tian et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun, 8, 14051(2017).

    [23] G Niu, X Guo, L Wang. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem, A, 3, 8970(2015).

    [24] Y Rong, L Liu, A Mei et al. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater, 5, 1501066(2015).

    [25] S H Turren-Cruz, M Saliba, M T Mayer et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci, 11, 78(2018).

    [26] A Babayigit, A Ethirajan, M Muller et al. Toxicity of organometal halide perovskite solar cells. Nat Mater, 15, 247(2016).

    [27] H J Snaith, A Abate, J M Ball et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 5, 1511(2014).

    [28] W Tress, N Marinova, T Moehl et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci, 8, 995(2015).

    [29] R J Sutton, G E Eperon, L Miranda et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 6, 1502458(2016).

    [30] B Conings, J Drijkoningen, N Gauquelin et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 5, 1500477(2015).

    [31] W Nie, J C Blancon, A J Neukirch et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat Commun, 7, 11574(2016).

    [32] I C Smith, E T Hoke, D Solis-Ibarra et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 53, 11232(2014).

    [33] Y Chen, Y Sun, J Peng et al. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater, 30, 1703487(2018).

    [34] L Pedesseau, D Sapori, B Traore et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano, 10, 9776(2016).

    [35] C C Stoumpos, D H Cao, D J Clark et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater, 28, 2852(2016).

    [36] H Shen, J Li, H Wang et al. Two-dimensional lead-free perovskite (C6H5C2H4NH3)2CsSn2I7 with high hole mobility. J Phys Chem Lett, 10, 7(2018).

    [37] C Soe, C Stoumpos, M Kepenekian et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance. J Am Chem Soc, 139, 16297(2017).

    [38] J Li, J Wang, Y Zhang et al. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater, 5, 021001(2018).

    [39] D Straus, N Iotov, M Gau et al. Longer cations increase energetic disorder in excitonic 2D hybrid perovskites. J Phys Chem Lett, 10, 1198(2019).

    [40] D H Cao, C C Stoumpos, O K Farha et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 137, 7843(2015).

    [41] K Gauthron, J Lauret, L Doyennette et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4–NH3)2–PbI4 perovskite. Opt Express, 18, 5912(2010).

    [42] Z Tan, Y Wu, H Hong et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J Am Chem Soc, 138, 16612(2016).

    [43] L N Quan, Y Zhao, F P Garcia de Arquer et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett, 17, 3701(2017).

    [44] T Matsushima, F Mathevet, B Heinrich et al. N-channel field-effect transistors with an organic–inorganic layered perovskite semiconductor. Appl Phys Lett, 109, 253301(2016).

    [45] T Matsushima, S Hwang, A S Sandanayaka et al. Solution-processed organic-inorganic perovskite field-effect transistors with high hole mobilities. Adv Mater, 28, 10275(2016).

    [46] J Wang, H Shen, W Li et al. The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport, and charge transport. Adv Sci, 1802019(2019).

    [47] R L Milot, R J Sutton, G E Eperon et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett, 16, 7001(2016).

    [48] M Kumagai, T Takagahara. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys Rev B, 40, 12359(1989).

    [49] X Hong, T Ishihara, A Nurmikko. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B, 45, 6961(1992).

    [50] L N Quan, M Yuan, R Comin et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 138, 2649(2016).

    [51] B Liu, M Long, M Q Cai et al. Influence of the number of layers on ultrathin CsSnI3 perovskite: from electronic structure to carrier mobility. J Phys D, 51, 105101(2018).

    [52] H Tsai, W Nie, J C Blancon et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 536, 312(2016).

    [53] C Fang, H Wang, Z Shen et al. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Appl Mater Interfaces, 11(2019).

    [54] R K Misra, B E Cohen, L Iagher et al. Low-dimensional organic–inorganic halide perovskite: structure, properties, and applications. ChemSusChem, 10, 3712(2017).

    [55] J Even, L Pedesseau, C Katan. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 15, 3733(2014).

    [56] G Grancini, C Roldán-Carmona, I Zimmermann et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun, 8, 15684(2017).

    [57] Z Wang, Q Lin, F P Chmiel et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy, 2, 17135(2017).

    [58] J Yan, W Qiu, G Wu et al. Recent progress on 2D/quasi-2D layered metal halide perovskites for solar cells. J Mater Chem A, 6, 11063(2018).

    [59] Y Bai, S Xiao, C Hu et al. Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p–i–n photovoltaics. Adv Energy Mater, 7, 1701038(2017).

    [60] M Yuan, L N Quan, R Comin et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 11, 872(2016).

    [61] T M Koh, V Shanmugam, J Schlipf et al. Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics. Adv Mater, 28, 3653(2016).

    [62]

    [63] J Zhou, Y Chu, J Huang. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl Mater Interfaces, 8, 25660(2016).

    [64] N Wang, L Cheng, R Ge et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 10, 699(2016).

    [65] Y Y Wang, R X Gao, Z H Ni et al. Thickness identification of two-dimensional materials by optical imaging. Nanotechnology, 23, 495713(2012).

    [66] J Chen, L Gan, F Zhuge et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew Chem, 129, 2430(2017).

    [67] L Dou, A B Wong, Y Yu et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349, 1518(2015).

    [68] C Fang, J Li, J Wang et al. Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 20, 6538(2018).

    [69] Z Chen, Y Wang, X Sun et al. Van Der Waals hybrid perovskite of high optical quality by chemical vapor deposition. Adv Opt Mater, 5, 201700373(2017).

    [70] L Li, J Li, S Lan et al. Two-step growth of 2D organic-inorganic perovskite microplates and arrays for functional optoelectronics. J Phys Chem Lett, 9, 4532(2018).

    [71] Y Lin, Y Bai, Y Fang et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett, 2, 1571(2017).

    [72] J Liu, J Leng, K Wu et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J Am Chem Soc, 139, 1432(2017).

    [73] T Hu, M D Smith, E R Dohner et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J Phys Chem Lett, 7, 2258(2016).

    [74] D Emin, T Holstein. Adiabatic theory of an electron in a deformable continuum. Phys Rev Lett, 36, 323(1976).

    [75] V V Kabanov, O Y Mashtakov. Electron localization with and without barrier formation. Phys Rev B, 47, 6060(1993).

    [76] M D Smith, A Jaffe, E R Dohner et al. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem Sci, 8, 4497(2017).

    [77] A Yangui, D Garrot, J S Lauret et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J Phys Chem C, 119, 23638(2015).

    [78] J Li, J Wang, J Ma et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun, 10, 806(2019).

    [79] D Cortecchia, S Neutzner, A R S Kandada et al. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J Am Chem Soc, 139, 39(2016).

    [80] X Wu, M T Trinh, D Niesner et al. Trap states in lead iodide perovskites. J Am Chem Soc, 137, 2089(2015).

    [81] D B Straus, S H Parra, N Iotov et al. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J Am Chem Soc, 138, 13798(2016).

    [82] Y Fu, W Zheng, X Wang et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J Am Chem Soc, 140, 15675(2018).

    [83] B Hwang, J S Lee. 2D Perovskite-based self-aligned lateral heterostructure photodetectors utilizing vapor deposition. Adv Opt Mater(2018).

    [84] J Wang, J Li, Q Tan et al. Controllable synthesis of two-dimensional Ruddlesden-Popper-type perovskite heterostructures. J Phys Chem Lett, 8, 6211(2017).

    [85] J Ahn, E Lee, J Tan et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater Horiz, 4, 851(2017).

    Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites[J]. Journal of Semiconductors, 2019, 40(4): 041901
    Download Citation