• Journal of Infrared and Millimeter Waves
  • Vol. 31, Issue 6, 486 (2012)
LI Ying-Ying1、*, RU Guo-Ping1, and LI Z.-M. Simon2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2012.00486 Cite this Article
    LI Ying-Ying, RU Guo-Ping, LI Z.-M. Simon. Simulation of transport properties in mid-infrared quantum cascade lasers[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 486 Copy Citation Text show less
    References

    [1] Donovan K, Harrison P, Kelsall R W. Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device [J]. J. Appl. Phys., 2001, 89(6): 3084-3090.

    [2] Indjin D, Harrison P, Kelsall R W, et al. Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers[J]. J. Appl. Phys., 2002, 91(11): 9019-9026.

    [3] Kim J, Lerttamrab M, Chuang S L, et al. Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers [J]. IEEE J. Quantum Electron.,2004, 40(12):1663-1674.

    [4] Iotti R C, Rossi F. Microscopic theory of hot-carrier relaxation in semiconductor-based quantum-cascade lasers[J]. Appl. Phys. Lett.,2000,76(16): 2265-2267.

    [5] Iotti R C Rossi F. Nature of charge transport in quantum-cascade lasers [J]. Phys. Rev. Lett., 2001, 87(14): 146603.

    [6] Compagnone F, Carlo A D, Lugli P. Monte Carlo simulation of electron dynamics in superlattice quantum cascade lasers [J]. Appl. Phys. Lett., 2002, 80(6): 920-922.

    [7] Bellotti E, Driscoll K, Moustakas T D, et al. Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors [J]. J. Appl. Phys., 2009, 105(11) :113103.

    [8] Wacker A. Gain in quantum cascade lasers and superlattices: A quantum transport theory [J]. Phys. Rev. B, 2002, 66(8): 085326.

    [9] Yasuda H, Kubis T, Vogl P, et al. Nonequilibrium Green's function calculation for four-level scheme terahertz quantum cascade lasers [J]. Appl. Phys. Lett., 2009, 94(15):151109.

    [10] Kubis T, Yeh C, Vogl P, et al. Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers [J]. Phys. Rev. B, 2009, 79(19), 195323.

    [11] Terazzi R, Gresch T, Wittmann A, et al. Sequential resonant tunneling in quantum cascade lasers [J]. Phys. Rev. B, 2008, 78(15):155328.

    [12] Terazzi R, Faist J. A density matrix model of transport and radiation in quantum cascade lasers [J]. New J. Phys., 2010, 12(03): 033045.

    [13] Li Z M Simon, Li Y Y, Ru G. P. Simulation of quantum cascade lasers [J]. J. Appl. Phys., 2011, 110(09): 093109 .

    [14] Li Y Y, Ru G P, Li Z M Simon [C]. In IEEE 9th International Conference on ASIC, Xiamen, China, Oct. 25-28, 2011: 866-869.

    [15] See http://crosslight.com for information about LASTIP and PICS3D simulation software packages.

    [16] Ashcroft N W, Mermin N D. Solid State Physics [M]. Saunders College Publishing. 1976: 1-28.

    [17] Gmachl C, Tredicucci A, Capasso F, et al. High-power gimel approximate to 8 (m quantum cascade lasers with near optimum performance [J]. Appl. Phys. Lett., 1998, 72(24): 3130-3132.

    [18] Scalari G, Terazzi R, Giovannini M, et al. Population inversion by resonant tunneling in quantum wells [J]. Appl. Phys. Lett., 2007, 91(3):032103.

    [19] Sirtori C, Capasso F, Faist J, et al. Resonant tunneling in quantum cascade lasers [J]. IEEE J. Quantum Electron., 1998, 34(9):1722-1729.

    [20] Pflugl C, Diehl L, Lyakh A, et al. Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers [J]. Opt. Express, 2010, 18(2): 746-753.

    [21] Liu P Q, Hoffman A J, Escarra M D. Highly power-efficient quantum cascade lasers [J]. Nature Photon., 2010, 4:95-98.

    LI Ying-Ying, RU Guo-Ping, LI Z.-M. Simon. Simulation of transport properties in mid-infrared quantum cascade lasers[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 486
    Download Citation