• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0251203 (2022)
Yukun WANG, Zhongming ZHENG, Hao LONG*, Yang MEI, and Baoping ZHANG*
Author Affiliations
  • School of Electronic Science and Engineering(National Model Microelectronics College),Xiamen University,Xiamen 361005,China
  • show less
    DOI: 10.3788/gzxb20225102.0251203 Cite this Article
    Yukun WANG, Zhongming ZHENG, Hao LONG, Yang MEI, Baoping ZHANG. Development and Challenges of Nitride Vertical-cavity Surface-emitting Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203 Copy Citation Text show less
    References

    [1] K IGA. Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 47, 1-10(2008).

    [2] K IGA. VCSEL-Its conception, development, and future(2013).

    [3] Jiye ZHANG, Xue LI, Jianwei ZHANG et al. Research progress of vertical-cavity surface-emitting Laser. Chinese Journal of Luminescence, 41, 1443-1459(2020).

    [4] Feng WU, Jiangnan DAI, Changqing CHEN. Research progress of AlGaN based deep ultraviolet light emitting diodes. Journal of Synthetic Crystals, 49, 2079-2097(2020).

    [5] H SODA, K-IIGA , C KITAHARA et al. GaInAsP/InP surface emitting injection lasers. Japanese Journal of Applied Physics, 18, 2329-2330(1979).

    [6] K IGA, S KINOSHITA, F KOYAMA. Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6mA. Electronics Letters, 23, 134-136(1987).

    [7] F KOYAMA, S KINOSHITA, K IGA. Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser. Applied Physics Letters, 55, 221-222(1989).

    [8] Lie CAI, Baoping ZHANG, Jiangyong ZHANG et al. Fabrication and characteristics of GaN-based blue VCSEL. Chinese Journal of Luminescence, 37, 452-456(2016).

    [9] Tianrui YANG, Huan XU, Yang MEI et al. Development of GaN-based vertical-cavity surface-emitting lasers. Chinese Journal of Lasers, 47, 151-165(2020).

    [10] H AMANO, M KITO, K HIRAMATSU et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 28, L2112-L2114(1989).

    [11] S NAKAMURA. GaN growth using GaN buffer layer. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 30, L1705-L1707(1991).

    [12] J M REDWING, D A S LOEBER, N G ANDERSON et al. An optically pumped GaN–AlGaN vertical cavity surface emitting laser. Applied Physics Letters, 69, 1-3(1996).

    [13] L TIEN CHANG, CJUN RONG, C SHIH WEI et al. Development of GaN-based vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 15, 850-860(2009).

    [14] S W CHIOU, Y C LEE, C S CHANG et al. High speed red RCLEDs and VCSELs for plastic optical fiber application, 129-133(2005).

    [15] CY LI, HH LU, WS TSAI et al. A 5 m/25 Gbps underwater wireless optical communication system. IEEE Photonics Journal, 10, 1-9(2018).

    [16] M KNEISSL, J RASS. III-Nitride ultraviolet emitters(2016).

    [17] M A KHAN, N MAEDA, M JO et al. 13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. Journal of Materials Chemistry C, 7, 143-152(2019).

    [18] T HONDA, A KATSUBE, T SAKAGUCHI et al. Threshold estimation of GaN-based surface emitting lasers operating in ultraviolet spectral region. Japanese Journal of Applied Physics, 34, 3527-3532(1995).

    [19] T SOMEYA, R WERNER, A FORCHEL et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 285, 1905-1906(1999).

    [20] T SOMEYA, K TACHIBANA, J LEE et al. Lasing emission from an In0.1Ga0.9N vertical cavity surface emitting laser. Japanese Journal of Applied Physics Part 2-Letters, 37, L1424-L1426(1998).

    [21] Y K SONG, H ZHOU, M DIAGNE et al. A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser. Applied Physics Letters, 76, 1662-1664(2000).

    [22] T TAWARA, H GOTOH, T AKASAKA et al. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Applied Physics Letters, 83, 830-832(2003).

    [23] L E CAI, J Y ZHANG, B P ZHANG et al. Blue-green optically pumped GaN-based vertical cavity surface emitting laser. Electronics Letters, 44, 972-974(2008).

    [24] JT CHU, TC LU, M YOU et al. Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers. Applied Physics Letters, 89, 121112(2006).

    [25] E FELTIN, G CHRISTMANN, J DORSAZ et al. Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN VCSEL structure. Electronics Letters, 43, 924-926(2007).

    [26] T C LU, C C KAO, H C KUO et al. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Applied Physics Letters, 92, 141102(2008).

    [27] Fangzhi LI, Lei HU, Aiqin TIAN et al. Current status and future trends of gan-based blue and green laser diodes. Journal of Synthetic Crystals, 49, 1996-2012(2020).

    [28] I L KRESTNIKOV, W V LUNDIN, A V SAKHAROV et al. Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser. Applied Physics Letters, 75, 1192-1194(1999).

    [29] Y HIGUCHI, K OMAE, H MATSUMURA et al. Room-temperature CW lasing of a GaN-Based vertical-cavity surface-emitting laser by current injection. Applied Physics Express, 1, 121102(2008).

    [30] W J LIU, X L HU, L Y YING et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers. Applied Physics Letters, 104, 251116(2014).

    [31] S IZUMI, N FUUTAGAWA, T HAMAGUCHI et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth. Applied Physics Express, 8, 062702(2015).

    [32] M KURAMOTO, S KOBAYASHI, T AKAGI et al. High-power GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors. Applied Sciences, 9, 416-429(2019).

    [33] W MURANAGA, T AKAGI, R FUWA et al. GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. Japanese Journal of Applied Physics, 58, SCCC01(2019).

    [34] M KURAMOTO, S KOBAYASHI, K TAZAWA et al. In-phase supermode operation in GaN-based vertical-cavity surface-emitting laser. Applied Physics Letters, 115, 041101(2019).

    [35] M KURAMOTO, S KOBAYASHI, T AKAGI et al. Watt-class blue vertical-cavity surface-emitting laser arrays. Applied Physics Express, 12, 091004(2019).

    [36] T HAMAGUCHI, H NAKAJIMA, M TANAKA et al. Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Applied Physics Express, 12, 044004(2019).

    [37] M KURAMOTO, S KOBAYASHI, T AKAGI et al. Nano-height cylindrical waveguide in GaN-based vertical-cavity surface-emitting lasers. Applied Physics Express, 13, 082005(2020).

    [38] J A KEARNS, N C PALMQUIST, J BACK et al. Blue semipolar III-nitride vertical-cavity surface-emitting lasers(2020).

    [39] T C CHANG, E HASHEMI, K B HONG et al. Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors. ACS Photonics, 7, 861-866(2020).

    [40] Lixin LIU, Hongdong ZHAO, Hanben NIU. Influences of N-DBR and double oxide-confined regions on the characteristics of electrical, optical and thermal fields in VCSEL. Acta Photonica Sinica, 325-329(2006).

    [41] R XU, Y MEI, H XU et al. Effects of lateral optical confinement In GaN VCSELs with double dielectric DBRs. IEEE Photonics Journal, 12, 1-8(2020).

    [42] R T ELAFANDY, J H KANG, B LI et al. Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector. Applied Physics Letters, 117, 011101(2020).

    [43] H XU, Y MEI, R B XU et al. Green VCSELs based on nitride semiconductors. Japanese Journal of Applied Physics, 59, SO0803(2020).

    [44] T LANGER, A KRUSE, F A KETZER et al. Origin of the "green gap": Increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures. Physica Status Solidi C, 8, 2170-2172(2011).

    [45] G WENG, Y MEI, J LIU et al. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Optics Express, 24, 15546-15553(2016).

    [46] Y MEI, G E WENG, B P ZHANG et al. Quantum dot vertical-cavity surface-emitting lasers covering the 'green gap'. Light: Science & Applications, 6, e16199(2017).

    [47] R B XU, Y MEI, B P ZHANG et al. Simultaneous blue and green lasing of GaN-based vertical-cavity surface-emitting lasers. Semiconductor Science and Technology, 32, 105012(2017).

    [48] R XU, Y MEI, H XU et al. Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Transactions on Electron Devices, 65, 4401-4406(2018).

    [49] T HAMAGUCHI, Y HOSHINA, K HAYASHI et al. Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on{20-21}semi-polar GaN. Applied Physics Express, 13, 041002(2020).

    [50] M LEROUX, S DALMASSO, F NATALI et al. Optical characterization of Al(x)Ga(1-x)N alloys (x < 0.7) grown on sapphire or silicon. Physica Status Solidi B-Basic Solid State Physics, 234, 887-891(2002).

    [51] K IIDA, T KAWASHIMA, A MIYAZAKI et al. 350.9 nm UV laser diode grown on low-dislocation-density AlGaN. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 43, L499-L500(2004).

    [52] M SHATALOV, M GAEVSKI, V ADIVARAHAN et al. Room-temperature stimulated emission from AlN at 214 nm. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 45, L1286-L1288(2006).

    [53] T TAKANO, Y NARITA, A HORIUCHI et al. Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Applied Physics Letters, 84, 3567-3569(2004).

    [54] H YOSHIDA, Y YAMASHITA, M KUWABARA et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Applied Physics Letters, 93, 241106(2008).

    [55] Z Z ZHANG, M KUSHIMOTO, T SAKAI et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Applied Physics Express, 12, 124003(2019).

    [56] H L ZHOU, M DIAGNE, E MAKARONA et al. Near ultraviolet optically pumped vertical cavity laser. Electronics Letters, 36, 1777-1779(2000).

    [57] R CHEN, H D SUN, T WANG et al. Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Applied Physics Letters, 96, 241101(2010).

    [58] Y S LIU, T T KAO, K MEHTA et al. Development for ultraviolet vertical cavity surface emitting lasers(2016).

    [59] Y S LIU, HAQ A F M SANIUL, K MEHTA et al. Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector. Applied Physics Express, 9, 111002(2016).

    [60] T C CHANG, S Y KUO, E HASHEMI et al. GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector(2018).

    [61] Y J PARK, T DETCHPROHM, K MEHTA et al. Optically pumped vertical-cavity surface-emitting lasers at 375 nm with Air-Gap/Al0.05Ga0.95N distributed bragg reflectors(2019).

    [62] Y MEI, T R YANG, W OU et al. Low-threshold wavelength-tunable ultraviolet vertical-cavity surface-emitting lasers from 376 to 409 nm. Fundamental Research, 1, 685-691(2021).

    [63] F HJORT, J ENSLIN, M COBET et al. A 310 nm optically pumped AlGaN vertical-cavity surface-emitting laser. ACS Photonics, 8, 135-141(2021).

    [64] O PAUL, Y LI, Z ZHENG. Loss analysis in nitride deep ultraviolet planar cavity. Journal of Nanophotonics, 12, 043504(2018).

    [65] Z ZHENG, Y MEI, H LONG et al. AlGaN-based deep ultraviolet vertical-cavity surface-emitting laser. IEEE Electron Device Letters, 42, 375-378(2021).

    [66] T DETCHPROHM, X LI, S C SHEN et al. III-N Wide Bandgap Deep-Ultraviolet Lasers and Photodetectors, 121-166(2017).

    [67] H J GAO, W D NIX. Surface roughening of heteroepitaxial thin films. Annual Review of Materials Science, 29, 173-209(1999).

    [68] K BAN, J YAMAMOTO, K TAKEDA et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Applied Physics Express, 4, 052101(2011).

    [69] S KAMIYAMA, M IWAYA, N HAYASHI et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. Journal of Crystal Growth, 223, 83-91(2001).

    [70] H AMANO, N SAWAKI, I AKASAKI et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 48, 353-355(1986).

    [71] A D BYKHOVSKI, B L GELMONT, M S SHUR. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices. Journal of Applied Physics, 81, 6332-6338(1997).

    [72] H M WANG, J P ZHANG, C Q CHEN et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Applied Physics Letters, 81, 604-606(2002).

    [73] J ZHANG, H M WANG, M E GAEVSKI et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Applied Physics Letters, 80, 3542-3544(2002).

    [74] U ZEIMER, V KUELLER, A KNAUER et al. High quality AlGaN grown on ELO AlN/sapphire templates. Journal of Crystal Growth, 377, 32-36(2013).

    [75] P VENNEGUES, Z BOUGRIOUA, J M BETHOUX et al. Relaxation mechanisms in metal-organic vapor phase epitaxy grown Al-rich (Al,Ga)N/GaN heterostructures. Journal of Applied Physics, 97, 024912(2005).

    [76] X SUN, D LI, Y CHEN et al. In situ observation of two-step growth of AlN on sapphire using high-temperature metal–organic chemical vapour deposition. CrystEngComm, 15, 6066-6073(2013).

    [77] A YOSHIKAWA, T NAGATOMI, T MORISHITA et al. High-quality AlN film grown on a nanosized concave–convex surface sapphire substrate by metalorganic vapor phase epitaxy. Applied Physics Letters, 111, 162102(2017).

    [78] L V R-DMARCOS, J I LARRUQUERT, J A MÉNDEZ et al. Self-consistent optical constants of SiO2 and Ta2O5 films. Optical Materials Express, 6, 3622-3637(2016).

    [79] F HAKOE, H TOKORO, S OHKOSHI. Dielectric and optical constants of lambda-Ti3O5 film measured by spectroscopic ellipsometry. Materials Letters, 188, 8-12(2017).

    [80] V N KRUCHININ, T V PEREVALOV, V V ATUCHIN et al. Optical properties of TiO2 films deposited by reactive electron beam sputtering. Journal of Electronic Materials, 46, 6089-6095(2017).

    [81] M CHEN, J Y ZHANG, X Q LV et al. Effect of laser pulse width on the laser lift-off process of GaN films. Chinese Physics Letters, 30, 014203(2013).

    [82] H AOSHIMA, K TAKEDA, K TAKEHARA et al. Laser lift-off of AlN/sapphire for UV light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 9, 753-756(2012).

    [83] T UEDA, M ISHIDA, M YURI. Laser lift-off of very thin AlGaN film from sapphire using selective decomposition of GaN interlayer. Applied Surface Science, 216, 512-518(2003).

    [84] W GUO, R KIRSTE, I BRYAN et al. KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode. Applied Physics Letters, 106, 082110(2015).

    [85] R KHARE, E L HU, J J BROWN et al. Micromachining in III–V semiconductors using wet photoelectrochemical etching. Journal of Vacuum Science & Technology B, 11, 2497-2501(1993).

    [86] A C TAMBOLI, M C SCHMIDT, A HIRAI et al. Photoelectrochemical undercut etching of m-Plane GaN for microdisk applications. Journal of the Electrochemical Society, 156, H767-H771(2009).

    [87] E D HABERER, R SHARMA, A R STONAS et al. Removal of thick (> 100 nm) InGaN layers for optical devices using band-gap-selective photoelectrochemical etching. Applied Physics Letters, 85, 762-764(2004).

    [88] C YOUTSEY, R MCCARTHY, R REDDY et al. Wafer-scale epitaxial lift-off of GaN using bandgap-selective photoenhanced wet etching. Physica Status Solidi B-Basic Solid State Physics, 254, 1600774(2017).

    [89] M TAUTZ, D D DIAZ. Wet-chemical etching of GaN: underlying mechanism of a key step in blue and white LED production. Chemistryselect, 3, 1480-1494(2018).

    [90] M ARITA, S KAKO, S IWAMOTO et al. Fabrication of AlGaN two-dimensional photonic crystal nanocavities by selective thermal decomposition of GaN. Applied Physics Express, 5, 126502(2012).

    [91] K OGAWA, R HACHIYA, T MIZUTANI et al. Fabrication of InGaN/GaN MQW nano-LEDs by hydrogen-environment anisotropic thermal etching. Physica Status Solidi a-Applications and Materials Science, 214, 1600613(2017).

    [92] T KOUNO, M SAKAI, H TAKESHIMA et al. Microsensors based on a whispering gallery mode in AlGaN microdisks undercut by hydrogen-environment thermal etching. Applied Optics, 56, 3589-3593(2017).

    [93] R KITA, R HACHIYA, T MIZUTANI et al. Characterization of hydrogen environment anisotropic thermal etching and application to GaN nanostructure fabrication. Japanese Journal of Applied Physics, 54, 046501(2015).

    [94] H LI, P WOLF, P MOSER et al. Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom, 25(2014).

    [95] E A CLINTON, Z ENGEL, E VADIEE et al. Ultra-wide-bandgap AlGaN homojunction tunnel diodes with negative differential resistance. Applied Physics Letters, 115, 082104(2019).

    [96] C KUHN, L SULMONI, M GUTTMANN et al. MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs. Photonics Research, 7, B7-B11(2019).

    [97] Y ZHANG, Z JAMAL-EDDINE, F AKYOL et al. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency. Applied Physics Letters, 112, 071107(2018).

    [98] M MALINVERNI, D MARTIN, N GRANDJEAN. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction. Applied Physics Letters, 107, 051107(2015).

    [99] J T LEONARD, E C YOUNG, B P YONKEE et al. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact. Applied Physics Letters, 107, 091105(2015).

    [100] J T LEONARD, H FUJIOKA, H MORKOÇ et al. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts(2016).

    [101] J T LEONARD, D A COHEN, B P YONKEE et al. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts. Journal of Applied Physics, 118, 4931883(2015).

    [102] J T LEONARD, D A COHEN, B P YONKEE et al. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Applied Physics Letters, 107, 145304(2015).

    [103] T ASHIDA, A MIYAMURA, N OKA et al. Thermal transport properties of polycrystalline tin-doped indium oxide films. Journal of Applied Physics, 105, 073709(2009).

    [104] Z L WU, M REICHLING, X Q HU et al. Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflectance methods. Applied Optics, 32, 5660-5665(1993).

    [105] D G CAHILL, T H ALLEN. Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings. Applied Physics Letters, 65, 309-311(1994).

    [106] J PIPREK, S C O DEVICES. Semiconductor optoelectronic devices: introduction to physics and simulation(2013).

    [107] F MEHNKE, C KUHN, M GUTTMANN et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Applied Physics Letters, 105, 051113(2014).

    [108] K IGA, H UENOHARA, F KOYAMA. Electron reflectance of multiquantum barrier(MQB). Electronics Letters, 22, 1008-1010(1986).

    [109] H HIRAYAMA, Y TSUKADA, T MAEDA et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Applied Physics Express, 3, 031002(2010).

    [110] J L LYONS, A JANOTTI, C GVAN DE WALLE. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Physical Review B, 89, 035204(2014).

    [111] T TANAKA, A WATANABE, H AMANO et al. p-type conduction in Mg‐doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 65, 593-594(1994).

    [112] J LI, T ODER, M NAKARMI et al. Optical and electrical properties of Mg-doped p-type AlxGa1-xN. Applied Physics Letters, 80, 1210-1212(2002).

    [113] M SUZUKI, J NISHIO, M ONOMURA et al. Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD. Journal of Crystal Growth, 189, 511-515(1998).

    [114] Y TANIYASU, M KASU, T MAKIMOTO. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, 325-328(2006).

    [115] H X JIANG, J Y LIN. Hexagonal boron nitride for deep ultraviolet photonic devices. Semiconductor Science and Technology, 29, 084003(2014).

    [116] M L NAKARMI, N NEPAL, C UGOLINI et al. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Applied Physics Letters, 89, 152120(2006).

    [117] K B NAM, M L NAKARMI, J LI et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Applied Physics Letters, 83, 878-880(2003).

    [118] T ZHENG, W LIN, D CAI et al. High Mg effective incorporation in Al-rich AlxGa1-xN by periodic repetition of ultimate V/III ratio conditions. Nanoscale Research Letters, 9, 1-7(2014).

    [119] C STAMPFL, C GVAN DE WALLE. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Physical Review B, 65, 155212(2002).

    [120] A CHAKRABORTY, C G MOE, Y WU et al. Electrical and structural characterization of Mg-doped p-type Al0.69Ga0.31N films on SiC substrate. Journal of Applied Physics, 101, 053717(2007).

    [121] C G DE WALLE, C STAMPFL, J NEUGEBAUER. Theory of doping and defects in III-V nitrides. Journal of Crystal Growth1998, 505-510(189).

    [122] P KOZODOY, S KELLER, S DENBAARS et al. MOVPE growth and characterization of Mg-doped GaN. Journal of Crystal Growth, 195, 265-269(1998).

    [123] S HAUTAKANGAS, K SAARINEN, L LISZKAY et al. Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy. Physical Review B, 72, 165303(2005).

    [124] S HAUTAKANGAS, J OILA, M ALATALO et al. Vacancy defects as compensating centers in Mg-doped GaN. Physical Review Letters, 90, 137402(2003).

    [125] U KAUFMANN, P SCHLOTTER, H OBLOH et al. Hole conductivity and compensation in epitaxial GaN : Mg layers. Physical Review B, 62, 10867-10872(2000).

    [126] C STAMPFL, C GVAN DE WALLE. Doping of AlxGa1-xN. Applied Physics Letters, 72, 459-461(1998).

    [127] Qingjun XU. Study on MOCVD growth of high Al fraction AlGaN and p-type doping of AlGaN films(2019).

    [128] W GOTZ, N M JOHNSON, J WALKER et al. Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical vapor deposition. Applied Physics Letters, 67, 2666-2668(1995).

    [129] J NEUGEBAUER, C G DE WALLE. Hydrogen in GaN: Novel aspects of a common impurity. Physical Review Letters, 75, 4452-4455(1995).

    [130] F A REBOREDO, S T PANTELIDES. Novel defect complexes and their role in the p-type doping of GaN. Physical Review Letters, 82, 1887-1890(1999).

    [131] J SIMON, Y CAO, D JENA. Short-period AlN/GaN p-type superlattices: hole transport use in p-n junctions(2009).

    [132] B CHENG, S CHOI, J E NORTHRUP et al. Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Applied Physics Letters, 102, 231106(2013).

    [133] M MARTENS, C KUHN, E ZIFFER et al. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes. Applied Physics Letters, 108, 151108(2016).

    [134] S A NIKISHIN, M HOLTZ, H TEMKIN. Digital alloys of AlN/AlGaN for deep UV light emitting diodes. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44, 7221-7226(2005).

    [135] T MAL TAHTAMOUNI, J Y LIN, H X JIANG. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes. Aip Advances, 4, 047122(2014).

    [136] Y H LIANG, E TOWE. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures. Journal of Applied Physics, 123, 095303(2018).

    [137] C BAYRAM, J L PAU, R MCCLINTOCK et al. Delta-doping optimization for high quality p-type GaN. Journal of Applied Physics, 104, 083512(2008).

    [138] M L NAKARMI, K H KIM, J LI et al. Enhanced p-type conduction in GaN and AlGaN by Mg-delta-doping. Applied Physics Letters, 82, 3041-3043(2003).

    [139] Y CHEN, H WU, E HAN et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Applied Physics Letters, 106, 162102(2015).

    [140] G NAMKOONG, E TRYBUS, K K LEE et al. Metal modulation epitaxy growth for extremely high hole concentrations above 10(19) cm(-3) in GaN. Applied Physics Letters, 93, 172112(2008).

    [141] J SIMON, V PROTASENKO, C LIAN et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 327, 60-64(2010).

    [142] L ZHANG, K DING, J C YAN et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Applied Physics Letters, 97, 062103(2010).

    [143] H SUN, T D MOUSTAKAS. UV emitters based on an AlGaN p-n junction in the form of graded-index separate confinement heterostructure. Applied Physics Express, 7, 012104(2014).

    [144] H SUN, E F PECORA, J WOODWARD et al. Effect of indium in Al0.65Ga0.35N/Al0.8Ga0.2N MQWs for the development of deep-UV laser structures in the form of graded-index separate confinement heterostructure (GRINSCH). Physica Status Solidi a-Applications and Materials Science, 213, 1165-1169(2016).

    [145] H KAWANISHI. Carbon-doped p-type (0001) plane AlGaN (Al=0.06 to0.55) with high hole density(2012).

    [146] S LI, T ZHANG, J WU et al. Polarization induced hole doping in graded AlxGa1-xN (x= 0.7∼1) layer grown by molecular beam epitaxy. Applied Physics Letters, 102, 062108(2013).

    Yukun WANG, Zhongming ZHENG, Hao LONG, Yang MEI, Baoping ZHANG. Development and Challenges of Nitride Vertical-cavity Surface-emitting Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203
    Download Citation