• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0251203 (2022)
Yukun WANG, Zhongming ZHENG, Hao LONG*, Yang MEI, and Baoping ZHANG*
Author Affiliations
  • School of Electronic Science and Engineering(National Model Microelectronics College),Xiamen University,Xiamen 361005,China
  • show less
    DOI: 10.3788/gzxb20225102.0251203 Cite this Article
    Yukun WANG, Zhongming ZHENG, Hao LONG, Yang MEI, Baoping ZHANG. Development and Challenges of Nitride Vertical-cavity Surface-emitting Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203 Copy Citation Text show less
    Structure and emission spectra of the 363 nm VCSEL [12]
    Fig. 1. Structure and emission spectra of the 363 nm VCSEL 12
    Structure,emission spectrum and output power of the 383 nm VCSEL [56]
    Fig. 2. Structure,emission spectrum and output power of the 383 nm VCSEL 56
    FESEM image and PL spectra of the 343.7 nm VCSEL[57]
    Fig. 3. FESEM image and PL spectra of the 343.7 nm VCSEL57
    Structure and emission spectra for the 367.5 nm and the 374.9 nm VCSELs,respectively[58-59]
    Fig. 4. Structure and emission spectra for the 367.5 nm and the 374.9 nm VCSELs,respectively58-59
    Output characteristics of the HCG VCSEL[60]
    Fig. 5. Output characteristics of the HCG VCSEL60
    Structure,emission spectrum and output characteristic of the 375 nm VCSEL[61]
    Fig. 6. Structure,emission spectrum and output characteristic of the 375 nm VCSEL61
    Emission spectrum and output characteristic of the graded cavity length VCSEL[62]
    Fig. 7. Emission spectrum and output characteristic of the graded cavity length VCSEL62
    Structure,surface topography,emission spectrum and output characteristic of the 310 nm VCSEL[63]
    Fig. 8. Structure,surface topography,emission spectrum and output characteristic of the 310 nm VCSEL63
    Structure,emission spectrum and output characteristic of the 275.9 nm VCSEL[65]
    Fig. 9. Structure,emission spectrum and output characteristic of the 275.9 nm VCSEL65
    Variation of internal quantum efficiency of AlGaN multiple quantum wells with dislocation density in quantum wells[68]
    Fig. 10. Variation of internal quantum efficiency of AlGaN multiple quantum wells with dislocation density in quantum wells68
    Intracavity contact of VCSEL[94,26]
    Fig. 11. Intracavity contact of VCSEL9426
    Schematic diagram of the buried tunnel junction[98]
    Fig. 12. Schematic diagram of the buried tunnel junction98
    Refractive index and absorption coefficient dispersion for multi-layer ITO films[98,100-101]
    Fig. 13. Refractive index and absorption coefficient dispersion for multi-layer ITO films98100-101
    Schematic diagram of a VCSEL with TJ[100]
    Fig. 14. Schematic diagram of a VCSEL with TJ100
    Structure of the 250 nm AlGaN MQW LED with MQB EBL[109]
    Fig. 15. Structure of the 250 nm AlGaN MQW LED with MQB EBL109
    Variation of Mg acceptor activation energy with Al component x[111-116]
    Fig. 16. Variation of Mg acceptor activation energy with Al component x111-116
    MaterialRefractive indexExtinction coefficientReference
    SiO21.5078
    HfO21.987.67×10-3Ours
    Ti3O52.30.279
    Ta2O52.40.278
    TiO22.8180
    Table 1. Refractive indes and extinction coefficients for various transparent oxides around 300 nm
    MaterialThermal conductivities/(W⋅cm-1⋅K)Reference
    GaN1.3106
    ITO0.05103
    Ta2O50.004 5104
    SiO20.007105
    Table 2. Typical thermal conductivities for some of the materials on the p-side of the VCSEL in Fig. 18 at room-temperature
    Yukun WANG, Zhongming ZHENG, Hao LONG, Yang MEI, Baoping ZHANG. Development and Challenges of Nitride Vertical-cavity Surface-emitting Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203
    Download Citation