• Journal of Inorganic Materials
  • Vol. 38, Issue 2, 163 (2023)
Siheng HUA*, Dongwang YANG, Hao TANG, Xiong YUAN, Ruoyu ZHAN, Zhuoming XU, Jianan LYU, Yani XIAO, Yonggao YAN, and Xinfeng TANG
DOI: 10.15541/jim20220106 Cite this Article
Siheng HUA, Dongwang YANG, Hao TANG, Xiong YUAN, Ruoyu ZHAN, Zhuoming XU, Jianan LYU, Yani XIAO, Yonggao YAN, Xinfeng TANG. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units[J]. Journal of Inorganic Materials, 2023, 38(2): 163 Copy Citation Text show less
References

[1] W Y CHEN, X L SHI, J ZOU et al. Thermoelectric coolers: progress, challenges, and opportunities. Small Methods, 2101235(2022). https://onlinelibrary.wiley.com/doi/10.1002/smtd.202101235

[2] Z B ROSENBERG, N C WEINER, H SHAHARIAR et al. Design of a scalable, flexible, and durable thermoelectric cooling device for soft electronics using Kirigami cut patterns. Flexible and Printed Electronics, 015002(2022). https://doi.org/10.1088/2058-8585/ac48a0

[3] Y J CUI, B L WANG, K F WANG et al. An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic- thermoelectric device. Renewable Energy, 923(2022). https://linkinghub.elsevier.com/retrieve/pii/S0960148121015354

[4] Z H WU, S ZHANG, Z K LIU et al. Thermoelectric converter: strategies from materials to device application. Nano Energy, 106692(2022). https://linkinghub.elsevier.com/retrieve/pii/S2211285521009423

[5] Y J LIU, S H HOU, X D WANG et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small, 2106875(2022). https://onlinelibrary.wiley.com/doi/10.1002/smll.202106875

[6] A YUSUF, S BALLIKAYA. Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator. Energy, 122934(2022). https://linkinghub.elsevier.com/retrieve/pii/S0360544221031832

[7] F TOHIDI, S G HOLAGH, A CHITSAZ. Thermoelectric generators: a comprehensive review of characteristics and applications. Applied Thermal Engineering, 117793(2022). https://linkinghub.elsevier.com/retrieve/pii/S1359431121012175

[8] S MASOUMI, S O'SHAUGHNESSY, A PAKDEL. Organic-based flexible thermoelectric generators: from materials to devices. Nano Energy, 106774(2022). https://linkinghub.elsevier.com/retrieve/pii/S2211285521010235

[9] M N HASAN, M NAFEA, N NAYAN et al. Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices. Advanced Materials Technologies, 2101203(2021).

[10] E W ZAIA, M P GORDON, P Y YUAN et al. Progress and perspective: soft thermoelectric materials for wearable and internet-of-things applications. Advanced Electronic Materials, 1800823(2019). https://onlinelibrary.wiley.com/doi/10.1002/aelm.201800823

[11] Q H ZHANG, S Q BAI, L D CHEN. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 279(2019). http://www.jim.org.cn/EN/10.15541/jim20180465

[12] J CHENG, X HU, Q LI. Influences of different barrier films on microstructures and electrical properties of Bi2Te3-based joints. Journal of Materials Science: Materials in Electronics, 14714(2020). https://doi.org/10.1007/s10854-020-04035-w

[13] X K HU, S M ZHANG, F ZHAO et al. Thermoelectric device: contact interface and interface materials. Journal of Inorganic Materials, 269(2019). http://www.jim.org.cn/EN/10.15541/jim20180248

[14] W S LIU, H Z WANG, L J WANG et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. Journal of Materials Chemistry A, 13093(2013). http://xlink.rsc.org/?DOI=c3ta13456c

[15] L H WEITZMAN. Etching bismuth telluride. USA US30736863A(1967).

[18] H TANG, H BAI, X YANG et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices. Journal of Alloys and Compounds, 163090(2022). https://linkinghub.elsevier.com/retrieve/pii/S092583882104500X

[19] R P GUPTA, R MCCARTY, J SHARP. Practical contact resistance measurement method for bulk Bi2Te3-based thermoelectric devices. Journal of Electronic Materials, 1608(2014). http://link.springer.com/10.1007/s11664-013-2806-6

[20] R P GUPTA, K XIONG, J B WHITE et al. Low resistance Ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, H666(2010). https://iopscience.iop.org/article/10.1149/1.3385154

[21] KHEDIM M BEN, L CAGNON, E ANDRE et al. Contact resistance optimization for development of thermoelectric modules based on bismuth telluride nanowires. AIP Advances, 055109(2021). https://aip.scitation.org/doi/10.1063/5.0043940

[22] X KONG, Z WEI, L CAO et al. Controllable electrical contact resistance between Cu and oriented-Bi2Te3 film via interface tuning, 25606(2017).

[23] X ZHU, L CAO, W ZHU et al. Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance. Advanced Materials Interfaces, 1801279(2018). https://onlinelibrary.wiley.com/doi/10.1002/admi.201801279

[24] X ZOU, B SARIYEV, K CHEN et al. Enhanced interfacial bonding strength between metal and polymer via synergistic effects of particle anchoring and chemical bonding. Journal of Manufacturing Processes, 558(2021). https://linkinghub.elsevier.com/retrieve/pii/S1526612521003881

[25] P J TAYLOR, J R MADDUX, G MEISSNER et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Applied Physics Letters, 043902(2013). http://aip.scitation.org/doi/10.1063/1.4816054

[26] L R HILL. Method of bonding bismuth-containing bodies. USA US3110100A(1963).

[27] D KAZEMI, M R YAFTIAN, S D KOLEV. Selective extraction of Bi(III) from sulfate solutions by a poly(vinyl chloride) based polymer inclusion membrane incorporating bis(2-ethylhexyl) phosphoric acid as the extractant. Reactive & Functional Polymers, 104935(2021).

[28] I TERAMOTO, S TAKAYANAGI. Dislocation etch pits on bismuth telluride crystals. Journal of Applied Physics, 119(1961).

[29] K K CHEN, Y J ZHENG. Selective extracting Te from tellurium richen residue containing precious metals by H2SO4-H2O2 solutions. Chinese Journal of Rare Metals, 946(2013).

[30] S J FU, Z X LI, S L WANG et al. Extracting tellurium from alkaline residue. Chinese Journal of Rare Metals, 124(2011).

[31] B G LIU, X J HUANG. Patents technical reviews of metallurgical extraction of bismuth. Guangdong Chemical Industry, 111(2018).

[32] I BOGREKCI, M N DURAKBASA, P DEMIRCIOGLU. Comparison between 3D digital and optical microscopes for the surface measurement by computer vision. At-Automatisierungstechnik, 195(2013). https://www.degruyter.com/document/doi/10.1524/auto.2013.0024/html

[33] G F LEI, Q S LIU, X X PENG et al. Experimental study on mechanical properties of fractured rock mass under different anchoring modes. European Journal of Environmental and Civil Engineering, 931(2020). https://www.tandfonline.com/doi/full/10.1080/19648189.2018.1429321

[34] C YUAN, W S CHEN, T M PHAM et al. New epoxy anchor for better bonding between FRP sheets and concrete. Construction and Building Materials, 118628(2020). https://linkinghub.elsevier.com/retrieve/pii/S0950061820306334

Siheng HUA, Dongwang YANG, Hao TANG, Xiong YUAN, Ruoyu ZHAN, Zhuoming XU, Jianan LYU, Yani XIAO, Yonggao YAN, Xinfeng TANG. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units[J]. Journal of Inorganic Materials, 2023, 38(2): 163
Download Citation