• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 1, 3 (2022)
Kai XU1、*, Huan CAO1、2, Chao ZHANG1, Xiaomin HU1, Yunfeng HUANG1, Biheng LIU1, and Chuanfeng LI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.01.001 Cite this Article
    XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3 Copy Citation Text show less
    References

    [1] Liu S, Lou Y, Jing J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation [J]. Nature Communications, 2020, 11(1): 3875.

    [2] Lee S M, Lee S W, Jeong H, et al. Quantum teleportation of shared quantum secret [J]. Physical Review Letters, 2020, 124(6): 060501.

    [3] Langenfeld S, Welte S, Hartung L, et al. Quantum teleportation between remote qubit memories with only a single photon as a resource [J]. Physical Review Letters, 2021, 126(13): 130502.

    [4] Im D G, Lee C H, Kim Y, et al. Optimal teleportation via noisy quantum channels without additional qubit resources [J]. NPJ Quantum Information, 2021, 7(1): 86.

    [5] Huang N N, Huang W H, Li C M. Identification of networking quantum teleportation on 14-qubit IBM universal quantum computer [J]. Scientific Reports, 2020, 10(1): 3093.

    [6] Huang H L, Narozniake M, Liang F, et al. Emulating quantum teleportation of a Majorana zero mode qubit [J]. Physical Review Letters, 2021, 126(9): 090502.

    [7] Chen M C, Li R, Gan L, et al. Quantum-teleportation-inspired algorithm for sampling large random quantum circuits [J]. Physical Review Letters, 2020, 124(8): 080502.

    [8] Dildar H, Arapat A, Bai H T, et al. Effect of non-Markovian environment on quantum teleportation via a two-qubit Heisenberg XXZ spin chain [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 704-710.

    [9] Liu Z Y, Bai M Q, Xiao J Y, et al. An asymmetric controlled bidirectional teleportation scheme and optimization [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 31-36.

    [10] Shao Z L, Long Y X. Bidirectional and asymmetric quantum controlled teleportation by using a genuine seven-qubit entangled state [J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 34-42.

    [11] Wu T X, Li Y X, Meng W, et al. Enhancement of quantum teleportation fidelity based on partial memory channel [J]. Laser & Optoelectronics Progress, 2021, 58(5): 258-263.

    [12] Zhou Y Y, Liu Y H, Yan Z H, et al. A multifunctional quantum teleportation network [J]. Acta Physica Sinica, 2021, 70(10): 104201-104203.

    [13] Yin J, Li Y H, Liao S K, et al. Entanglement-based secure quantum cryptography over 1, 120 kilometres [J]. Nature, 2020, 582(7813): 501-505.

    [14] Cao Y, Li Y H, Yang K X, et al. Long-distance free-space measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2020, 125(26): 260503.

    [15] Zhou W T, Wang X, Bian Y X, et al. Multidimensional reverse negotiation protocol for continuous variable quantum key distribution based on polar code [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 460-467.

    [16] Feng B, Zhao Z Y, Jia W, et al. Reference-frame-independent quantum key distribution based on wavelength division multiplexing technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 346-353.

    [17] Tan S B, Chen J, Li S. Research on random number chip array scheme for quantum key distribution products [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 468-476.

    [18] Lim C C, Xu F, Pan J W, et al. Security analysis of quantum key distribution with small block length and its application to quantum space communications [J]. Physical Review Letters, 2021, 126(10): 100501.

    [19] Chen J P, Zhang C, Liu Y, et al. Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km [J]. Physical Review Letters, 2020, 124(7): 070501.

    [20] Gonzalez-Payo J, Trenyi R, Wang W, et al. Upper security bounds for coherent-one-way quantum key distribution [J]. Physical Review Letters, 2020, 125(26): 260510.

    [21] Rozema L A, Bateman J D, Mahler D H, et al. Scalable spatial superresolution using entangled photons [J]. Physical Review Letters, 2014, 112(22): 223602.

    [22] Paúr M, Stoklasa B, Hradil Z, et al. Achieving the ultimate optical resolution [J]. Optica, 2016, 3(10): 1144-1147.

    [23] Tsang M, Nair R, Lu X M. Quantum theory of superresolution for two incoherent optical point sources [J]. Physical Review X, 2016, 6(3): 031033.

    [24] Yang F, Tashchilina A, Moiseev E S, et al. Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode [J]. Optica, 2016, 3(10): 1148-1152.

    [25] Tham W K, Ferretti H, Steinberg A M. Beating Rayleigh’s curse by imaging using phase information [J]. Physical Review Letters, 2017, 118(7): 070801.

    [26] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy [J]. Science, 2018, 361(6405): 880-887.

    [27] Yu Z, Prasad S. Quantum limited superresolution of an incoherent source pair in three dimensions [J]. Physical Review Letters, 2018, 121(18): 180504.

    [28] Napoli C, Piano S, Leach R, et al. Towards superresolution surface metrology: Quantum estimation of angular and axial separations [J]. Physical Review Letters, 2019, 122(14): 140505.

    [29] Zhou Y, Yang J, Hassett J D, et al. Quantum-limited estimation of the axial separation of two incoherent point sources [J]. Optica, 2019, 6(5): 534-541.

    [30] Duan Z C, Li J P, Qin J, et al. Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source [J]. Optics Express, 2020, 28(13): 18917-18930.

    [31] Ezawa M. Electric circuits for universal quantum gates and quantum Fourier transformation [J]. Physical Review Research, 2020, 2(2): 023278.

    [32] Huang Y, Su Z, Zhang F, et al. Quantum algorithm for solving hyperelliptic curve discrete logarithm problem [J]. Quantum Information Processing, 2020, 19(2): 62.

    [33] Hwang Y, Kim T, Baek C, et al. Integrated analysis of performance and resources in large-scale quantum computing [J]. Physical Review Applied, 2020, 13(5): 054033.

    [34] Zhu D, Jaako T, He Q, et al. Quantum computing with superconducting circuits in the picosecond regime [J]. Physical Review Applied, 2021, 16(1): 014024.

    [35] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.

    [36] Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussian Boson sampling using stimulated squeezed light [J]. Physical Review Letters, 2021, 127(18): 180502.

    [37] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.

    [38] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574(7779): 505-510.

    [39] Gong M, Wang S, Zha C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor [J]. Science, 2021, 372(6545): 948-952.

    [40] Wu Y, Bao W S, Cao S, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Physical Review Letters, 2021, 127(18): 180501.

    [41] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343): 1140-1144.

    [42] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Physical Review, 1935, 47(10): 696-702.

    [43] Bell J S. On the Einstein Podolsky Rosen paradox [J]. Physics Physique Fizika, 1964, 1(3): 195-200.

    [44] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell’s theorem [J]. Physical Review Letters, 1981, 47(7): 460-463.

    [45] Aspect A, Dalibard J, Roger G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities [J]. Physical Review Letters, 1982, 49(2): 91-94.

    [46] Hensen B, Bernien H, Dreau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres [J]. Nature, 2015, 526(7575): 682-686.

    [47] Lloyd S. Enhanced sensitivity of photo detection via quantum illumination [J]. Science, 2008, 321(5895): 1463-1465.

    [48] Neeley M, Ansmann M, Bialczak R C, et al. Emulation of a quantum spin with a superconducting phase qudit [J]. Science, 2009, 325(5941): 722-725.

    [49] Kaltenbaek R, Lavoie J, Zeng B, et al. Optical one-way quantum computing with a simulated valence-bond solid [J]. Nature Physics, 2010, 6(11): 850-854.

    [50] Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: Concepts and experiments [J]. Physical Review Letters, 2017, 119(18): 180510.

    [51] Tavakoli A, Cabello A, Zukowski M, et al. Quantum clock synchronization with a single qudit [J]. Scientific Reports, 2015, 5(1): 7982.

    [52] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding [J]. Nature Physics, 2008, 4(4): 282-286.

    [53] Kong L J, Liu R, Qi W R, et al. Manipulation of eight-dimensional Bell-like states [J]. Science Advances, 2019, 5(6): eaat9206.

    [54] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems [J]. Physical Review Letters, 2002, 88(12): 127902.

    [55] Sheridan L, Scarani V. Security proof for quantum key distribution using qudit systems [J]. Physical Review A, 2010, 82(3): 030301.

    [56] Navez P, Cerf N J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition [J]. Physical Review A, 2003, 68(3): 32313.

    [57] Bruβ D, Macchiavello C. Optimal state estimation for d-dimensional quantum systems [J]. Physics Letters A, 1999, 253(5-6): 249-251.

    [58] Chen J L, Kaszlikowski D, Kwek L C, et al. Entangled three-state systems violate local realism more strongly than qubits: An analytical proof [J]. Physical Review A, 2001, 64(5): 52109.

    [59] Durt T, Kaszlikowski D, Zukowski M. Violations of local realism with quantum systems described by n-dimensional Hilbert spaces up to n=16 [J]. Physical Review A, 2001, 64(2): 024101.

    [60] Kaszlikowski D, Gnaciński P, Zukowski M, et al. Dimensional systems are stronger than for two qubits [J]. Physical Review Letters, 2000, 85(21): 4418-4421.

    [61] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement [J]. Nature Reviews Physics, 2020, 2(7): 365-381.

    [62] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.

    [63] Krenn M, Huber M, Fickler R, et al. Generation and confirmation of a (100×100)-dimensional entangled quantum system [C]. Proceedings of the National Academy of Sciences of the United States of America, 2014: 6243-6247.

    [64] Erhard M, Malik M, Krenn M, et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits [J]. Nature Photonics, 2018, 12(12): 759-764.

    [65] Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10(4): 248-252.

    [66] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1): 2781.

    [67] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120(19): 193904.

    [68] Berkhout G C, Lavery M P, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105(15): 153601.

    [69] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015, 518(7540): 516-519.

    [70] Brandt F, Hiekkamaki M, Bouchard F, et al. High-dimensional quantum gates using full-field spatial modes of photons [J]. Optica, 2020, 7(2): 98-107.

    [71] Zhang Y, Roux F S, Konrad T, et al. Engineering two-photon high-dimensional states through quantum interference [J]. Science Advances, 2016, 2(2): e1501165.

    [72] Hiekkamki M, Fickler R. High-dimensional two-photon interference effects in spatial modes [J]. Physical Review Letters, 2021, 126(12): 123601.

    [73] Chen Y, Gao J, Jiao Z Q, et al. Mapping twisted light into and out of a photonic chip [J]. Physical Review Letters, 2018, 121(23): 233602.

    [74] Chen Y, Xia K Y, Shen W G, et al. Vector vortex beam emitter embedded in a photonic chip [J]. Physical Review Letters, 2020, 124(15): 153601.

    [75] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [76] Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light [J]. Nano Letters, 2013, 13(9): 4148-4151.

    [77] Karimi E, Schulz S A, Leon I D, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light: Science & Applications, 2014, 3(5): 167.

    [78] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.

    [79] Chen L X, Zhang Y Y. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons [J]. Acta Physica Sinica, 2015, 64(16): 164210.

    [80] Guo Z Y, Gong C F, Liu H J, et al. The research progress of OAM optical communication technology [J]. Opto-Electronic Engineering, 2020, 47(3): 95-128.

    [81] Willner A E, Zhao Z, Liu C, et al. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams [J]. APL Photonics, 2021, 6(3): 030901.

    [82] Gori F, Guattari G, Padovani C. Bessel-Gauss beams [J]. Optics Communications, 1987, 64(6): 491-495.

    [83] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [84] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO(4) 1.3-mum bounce laser [J]. Optics Express, 2007, 15(12): 7616-7622.

    [85] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser [J]. Optics Express, 2013, 21(10): 12401-12409.

    [86] Lee A J, Zhang C, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser [J]. Optics Express, 2014, 22(5): 5400-5409.

    [87] Wang S, Zhang S L, Qiao H C, et al. Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser [J]. Optics Express, 2018, 26(21): 26925-26932.

    [88] Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser [J]. Science, 2016, 353(6298): 464-467.

    [89] Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip [J]. Optics Letters, 2018, 43(13): 3140-3143.

    [90] Shuang Z, Jian W. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides [J]. Optics Express, 2017, 25(15): 18492.

    [91] Xiao Q, Klitis C, Li S, et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings [C]. Conference on Lasers and Electro-Optics (CLEO), 2016: 1-2.

    [92] Lin J, Yuan X, Tao S H, et al. Synthesis of multiple collinear helical modes generated by a phase-only element [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23(5): 1214-1218.

    [93] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Perot cavity [J]. Opto-Electronic Advances, 2018, 1(5): 180006.

    [94] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterization of high-quality spiral phase plates for optical applications [J]. Applied Optics, 2015, 54(13): 4077-4083.

    [95] Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams [J]. Journal of the Optical Society of America B: Optical Physics, 2017, 34(3): 608-612.

    [96] Guo X L, Ke X Z. Research of realizing optical phase information encode by using orbital angular momentum of light beam [J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 69-76.

    [97] Ma Z, Li Y, Li Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase [J]. Optics Express, 2018, 26(5): 6067-6078.

    [98] Zhao Y, Du J, Zhang J, et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm [J]. Applied Physics Letters, 2018, 112: 171103.

    [99] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer [J]. Optics Express, 2018, 26(10): 13183-13194.

    [100] Zhang X D, Liu S J, Zhai F X, et al. A review of generation of vortex beams based on the geometric phase metasurfaces [J]. Journal of Light Industry, 2021, 36(3): 88-98.

    [101] Lv H R, Bai Y H, Ye Z W, et al. Advances in vortex beam generation using metasurface (invited) [J]. Infrared and Laser Engineering, 2021, 50(9): 62-77.

    [102] Liu K T, Liu X, Ge Y H, et al. Generation of orbital angular momentum vortex beams based on high-efficiency transmission metasurface [J]. Acta Optica Sinica, 2019, 39(1): 252-257.

    [103] Beijersbergen M W, Allen L, Vanderveen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular-momentum [J]. Optics Communications, 1993, 96(1-3): 123-132.

    [104] Inavalli V V G K, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber [J]. Optics Communications, 2010, 283(6): 861-864.

    [105] Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes [J]. Optics Letters, 2011, 36(21): 4269-4271.

    [106] Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs [J]. Optics Letters, 2012, 37(17): 3645-3647.

    [107] Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter [J]. Optics Letters, 2015, 40(18): 4376-4379.

    [108] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes [J]. Optics Letters, 2012, 37(16): 3294-3296.

    [109] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings [J]. Optics Letters, 2015, 40(17): 4010-4013.

    [110] Karimi E, Piccirillo B, Nagali E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates [J]. Applied Physics Letters, 2009, 94(23): 299.

    [111] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications [J]. Journal of Optics, 2011, 13(6): 064001.

    [112] Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges [J]. Applied Optics, 2012, 51(10): C1-6.

    [113] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288.

    [114] Friese M, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles [J]. Nature, 1998, 394(6691): 348-350.

    [115] O’neil A T, Macvicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam [J]. Physical Review Letters, 2002, 88(5): 053601.

    [116] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner [J]. Optics Letters, 1997, 22(1): 52-54.

    [117] Grier D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.

    [118] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: Theory and experiments [J]. Optics Letters, 2000, 25(2): 99-101.

    [119] Jesacher A, Furhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy [J]. Physical Review Letters, 2005, 94(23): 233902.

    [120] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality [J]. Physical Review Letters, 2009, 103(8): 83602.

    [121] Padgett M, Courtial J, Allen L. Light’s orbital angular momentum [J]. Physics Today, 2004, 57(5): 35-40.

    [122] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum [J]. Laser Photonics Reviews, 2010, 2(4): 299-313.

    [123] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    [124] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5): B14-B28.

    [125] Krenn M, Handsteiner J, Fink M, et al. Twisted photon entanglement through turbulent air across Vienna [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(46): 14197-14201.

    [126] Erhard M, Fickler R, Krenn M, et al. Twisted photons: New quantum perspectives in high dimensions [J]. Light: Science & Applications, 2018, 7: 17146.

    [127] Yang W D, Qiu X D, Chen L X. Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams [J]. Chinese Journal of Lasers, 2020, 47(5): 0500013.

    [128] Dong Y D, Peng X T, Song Y. Multi-user quantum identity authentication protocol based on orbital angular momentum [J]. Journal of Quantum Optics, 2019, 25(2): 152-157.

    [129] Ding D S, Zhou Z Y, Shi B S. A quantum memory for high-dimensional states [J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 442-448.

    [130] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.

    [131] Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2): 197-200.

    [132] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes [C]. The European Conference on Optical Communication (ECOC), 2014: 1-3.

    [133] Ren Y, Wang Z, Liao P, et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m [J]. Optics Letters, 2016, 41(3): 622.

    [134] Zhao Y, Liu J, Jing D, et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing [C]. Optical Fiber Communications Conference & Exhibition, 2016: 1-3.

    [135] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648-13653.

    [136] Sit A, Bouchard F, Fickler R, et al. High-dimensional intracity quantum cryptography with structured photons [J]. Optica, 2017, 4(9): 1006-1010.

    [137] Gopaul C, Andrews R. The effect of atmospheric turbulence on entangled orbital angular momentum states [J]. New Journal of Physics, 2007, 9(4): 94.

    [138] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum [J]. Optics Letters, 2009, 34(2): 142-144.

    [139] Bruenner T, Roux F S. Robust entangled qutrit states in atmospheric turbulence [J]. New Journal of Physics, 2012, 15(6): 345-351.

    [140] Alonso J R G, Brun T A. Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere [J]. Physical Review A, 2013, 88(2): 022326.

    [141] Ibrahim A H, Roux F S, Konrad T. Parameter dependence in the atmospheric decoherence of modally entangled photon pairs [J]. Physical Review A, 2014, 90(5): 052115.

    [142] Leonhard N D, Shatokhin V N, Buchleitner A. Universal entanglement decay of photonic orbital angular momentum qubit states in atmospheric turbulence [J]. Physical Review A, 2015, 91(1): 12345-12345.

    [143] Pors B J, Monken C H, Eliel E R, et al. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere [J]. Optics Express, 2011, 19(7): 6671-6683.

    [144] Ibrahim A H, Roux F S, Mclaren M, et al. Orbital-angular-momentum entanglement in turbulence [J]. Physical Review A, 2013, 88(1): 5706-5714.

    [145] Pereira M V D, Filpi La P, Monken C H. Cancellation of atmospheric turbulence effects in entangled two-photon beams [J]. Physical Review A, 2013, 88(5): 51-57.

    [146] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna [J]. New Journal of Physics, 2014, 16(11): 113028.

    [147] Xie G, Li L, Ren Y, et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link [J]. Optica, 2015, 2(4): 357.

    [148] Zhong X, Zhao Y Q, Ren G H, et al. Influence of finite apertures on orthogonality and completeness of Laguerre-Gaussian beams [J]. IEEE Access, 2018, 6: 8742-8754.

    [149] Malik M, O’sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding [J]. Optics Express, 2012, 20(12): 13195-13200.

    [150] Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing [J]. Optics Letters, 2013, 38(20): 4062-4065.

    [151] Ramachandran S, Kristensen P. Optical vortices in fiber [J]. Nanophotonics, 2013, 2(5-6): 455-474.

    [152] Brunet C, Ung B, Bélanger P, et al. Vector mode analysis of ring-core fibers: Design tools for spatial division multiplexing [J]. Journal of Lightwave Technology, 2014, 32(23): 4648-4659.

    [153] Wang Z, Tu J J, Gao S C, et al. Transmission and generation of orbital angular momentum modes in optical fibers [J]. Photonics, 2021, 8(7): 246.

    [154] Chen S, Liu J, Zhao Y, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1 km orbital angular momentum fiber [J]. Scientific Reports, 2016, 6(1): 38181.

    [155] Liu J, Li S, Du J, et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6 km few-mode fiber system [J]. Optics Letters, 2016, 41(9): 1969-1972.

    [156] Zhu L, Yang C, Xie D, et al. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals [J]. Optics Letters, 2017, 42(4): 763-766.

    [157] Chen S, Wang J. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre [J]. Scientific Reports, 2017, 7(1): 3990.

    [158] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6 km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21): 25637-25645.

    [159] Wang A, Zhu L, Wang L, et al. Directly using 8.8 km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission [J]. Optics Express, 2018, 26(8): 10038-10047.

    [160] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network [J]. Optics Letters, 2018, 43(8): 1894-1897.

    [161] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers [J]. Optics Letters, 2009, 34(16): 2525-2527.

    [162] Zhang J, Zhu G, Liu J, et al. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining [J]. Optics Express, 2018, 26(4): 4243-4257.

    [163] Jung Y, Kang Q, Zhou H, et al. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission [J]. Journal of Lightwave Technology, 2017, 35(8): 1363-1368.

    [164] Zhu G, Hu Z, Wu X, et al. Scalable mode division multiplexed transmission over a 10 km ring-core fiber using high-order orbital angular momentum modes [J]. Optics Express, 2018, 26(2): 594-604.

    [165] Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop [J]. Optics Express, 2016, 24(17): 18938-18947.

    [166] Li S, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing [J]. IEEE Photonics Journal, 2013, 5(5): 7101007.

    [167] Li S, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes) [J]. Scientific Reports, 2014, 4(1): 3853.

    [168] Hu Z A, Huang Y Q, Luo A P, et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes [J]. Optics Express, 2016, 24(15): 17285-17291.

    [169] Li S, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission [J]. Optics Express, 2015, 23(14): 18736-18745.

    [170] Long Z, Wang A, Shi C, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6 km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21): 25637-25645.

    [171] Huang H, Milione G, Lavery M P J, et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre [J]. Scientific Reports, 2015, 5(1): 14931.

    [172] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548.

    [173] Ingerslev K, Gregg P, Galili M, et al. 12 mode, WDM, MIMO-free orbital angular momentum transmission [J]. Optics Express, 2018, 26(16): 20225-20232.

    [174] Gregg P, Kristensen P, Golowich S E, et al. Stable transmission of 12 OAM states in air-core fiber [C]. Conference on Lasers and Electro-Optics, 2013: 2.

    [175] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes [J]. Optics Express, 2014, 22(15): 18044-18055.

    [176] Zhu L, Zhu G, Wang A, et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation [J]. Optics Letters, 2018, 43(8): 1890-1893.

    [177] Zhou W, Wang L, Shen L, et al. First demonstration of ultra-long-distance mode-division multiplexing transmission using orbital angular momentum (OAM) modes over 150-km low-loss ring-core fiber without amplifiers [C]. European Conference on Optical Communication, 2019: 216.

    [178] Zhang J, Liu J, Shen L, et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100 km single-span orbital angular momentum fiber [J]. Photonics Research, 2020, 8(7): 1236-1242.

    [179] Sit A, Fickler R, Alsaiari F, et al. Quantum cryptography with structured photons through a vortex fiber [J]. Optics Letters, 2018, 43(17): 4108-4111.

    [180] Cozzolino D, Bacco D, Da Lio B, et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication [J]. Physical Review Applied, 2019, 11(6): 064058.

    [181] Loeffler W, Euser T G, Eliel E R, et al. Fiber transport of spatially entangled photons [J]. Physical Review Letters, 2011, 106(24): 240505.

    [182] Kang Y, Ko J, Lee S M, et al. Measurement of the entanglement between photonic spatial modes in optical fibers [J]. Physical Review Letters, 2012, 109(2): 020502.

    [183] Cozzolino D, Polino E, Valeri M, et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states [J]. Advanced Photonics, 2019, 1(4): 046005.

    [184] Liu J, Nape I, Wang Q, et al. Multidimensional entanglement transport through single-mode fiber [J]. Science Advances, 2020, 6: eaay0837.

    [185] Cao H, Gao S C, Zhang C, et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber [J]. Optica, 2020, 7(3): 232-237.

    [186] Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems [J]. Physical Review Letters, 2002, 88(4): 040404.

    [187] Cozzolino D, Da Lio B, Bacco D, et al. High-dimensional quantum communication: Benefits, progress, and future challenges [J]. Advanced Quantum Technologies, 2019, 2(12): 1900038.

    [188] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J]. Optics Express, 2016, 24(9): 9794-9805.

    [189] Cheng M, Guo L, Li J, et al. Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean [J]. IEEE Photonics Journal, 2016, 8(1): 1.

    [190] Ren Y, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications [J]. Scientific Reports, 2016, 6: 33306.

    [191] Li Y, Cui Z, Han Y, et al. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36(4): 471-477.

    [192] Pan S, Wang L, Wang W, et al. An effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum [J]. Scientific Reports, 2019, 9(1): 14009.

    [193] Hu T, Pan S X, Wang L, et al. Influence of underwater turbulence on channel capacity of orbital angular momentum communication system [J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 499-506.

    [194] Lanzagorta M. Underwater communications [J]. Synthesis Lectures on Communications, 2012, 5(2): 1-129.

    [195] Zhai S, Wang J, Zhu Y, et al. Quantum-channel capacity of distributing orbital-angular-momentum states for underwater optical quantum communication [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38(1): 36-41.

    [196] Chen S, Li S, Zhao Y, et al. Demonstration of 20 Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation [J]. Optics Letters, 2016, 41(20): 4680-4683.

    [197] Ren Y, Xie G, Huang H, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link [J]. Optica, 2014, 1(6): 376-382.

    [198] Ren Y, Xie G, Huang H, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength [J]. Optics Letters, 2015, 40(10): 2249-2252.

    [199] Fu S, Zhang S, Wang T, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm [J]. Optics Letters, 2016, 41(14): 3185-3188.

    [200] Winzer P J, Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems [J]. Optics Express, 2011, 19(17): 16680-16696.

    [201] Huang H, Cao Y, Xie G, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization [J]. Optics Letters, 2014, 39(15): 4360-4363.

    [202] Ren Y, Wang Z, Xie G, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization [J]. Optics Letters, 2016, 41(11): 2406-2409.

    [203] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence [J]. Optics Express, 2018, 26(17): 22182-22196.

    [204] Zhang W H, Li C, Li W, et al. Performance of misaligned optical orbital angular momentum multiplexing communication system with MIMO equalization [J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 85-91.

    [205] Labroille G, Denolle B, Jian P, et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion [J]. Optics Express, 2014, 22(13): 15599-15607.

    [206] Song H, Song H, Zhang R, et al. Experimental mitigation of atmospheric turbulence effect using pre-signal combining for uni- and bi-directional free-space optical links with two 100 Gbit/s OAM-multiplexed channels [J]. Journal of Lightwave Technology, 2020, 38(1): 82-89.

    [207] Willner A E, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links [J]. Nanophotonics, 2020, 10(1): 225-233.

    [208] Valencia N H, Goel S, Mccutcheon W, et al. Unscrambling entanglement through a complex medium [J]. Nature Physics, 2020, 16(11): 1112-1116.

    [209] Hu X M, Zhang C, Guo Y, et al. Pathways for entanglement-based quantum communication in the face of high noise [J]. Physical Review Letters, 2021, 127(11): 110505.

    [210] Hu X M, Huang C X, Sheng Y B, et al. Long-distance entanglement purification for quantum communication [J]. Physical Review Letters, 2021, 126(1): 010503.

    [211] Bi F, Ba Z, Wang X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region [J]. Optics Express, 2018, 26(20): 25693-25705.

    [212] Huang S, Song X, Gao X, et al. Analog radio of fiber link of 2-Gbaud OOK/BPSK radio frequency-orbital angular momentum beam transmission over 19.4 km [J]. Optics Express, 2021, 29(2): 2124-2134.

    [213] Liu C, Wei X, Niu L, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer [J]. Optics Express, 2016, 24(12): 12534-12541.

    [214] Li H, Ren G, Zhu B, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers [J]. Optics Letters, 2017, 42(2): 179-182.

    XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3
    Download Citation