• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 2, 2150001 (2021)
Karina Litvinova1、*, Berthold Stegemann1, and Francisco Leyva1、2
Author Affiliations
  • 1Aston Medical School, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
  • 2Cardiology Department, Queen Elizabeth Hospital, Mindelsohn Way, B15 2TH, Birmingham, UK
  • show less
    DOI: 10.1142/s1793545821500012 Cite this Article
    Karina Litvinova, Berthold Stegemann, Francisco Leyva. Assessment of myocardial viability using a minimally invasive laser Doppler flowmetry on pig model[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150001 Copy Citation Text show less
    References

    [1] A. F. Schinkel, D. Poldermans, A. Elhendy, J. J. Bax ,"Assessment of myocardial viability in patients with heart failure," J. Nucl. Med. 48(7), 1135–1146 (2007).

    [2] M. Becker, C. Zwicker, M. Kaminski, A. Napp, E. Altiok, C. Ocklenburg, Z. Friedman, D. Adam, P. Schauerte, "Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position," JACC: Cardiovasc. Imaging 4(4), 366–374 (2011).

    [3] L. Riedlbauchova, R. Brunken, W. A. Jaber, L. Popova, D. Patel, V. L_ansk_a, K. Civello, J. Cummings, J. D. Burkhardt ,"The impact of myocardial viability on the clinical outcome of cardiac resynchronization therapy," J. Cardiovasc. Electrophys. 20(1), 50–57 (2009).

    [4] C. Ypenburg, M. J. Schalij, G. B. Bleeker, P. Steendijk, E. Boersma, P. Dibbets-Schneider, M. P. Stokkel, E. E. van der Wall, J. J. Bax, "Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients," Eur. Heart J. 28(1), 33–41 (2006).

    [5] J. S. Woo, T. K. Yu, W. S. Kim, K. S. Kim, W. Kim, "Early prediction of myocardial viability after acute myocardial infarction by two-dimensional speckle tracking imaging," J. Geriatr. Cardiol. 12, 474–474 (2015).

    [6] T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC Press, 2014).

    [7] V. Rajan, B. Varghese, T. G. van Leeuwen, W. Steenbergen, "Review of methodological developments in laser Doppler flowmetry," Lasers Med. Sci. 24(2), 269–283 (2009).

    [8] A. Humeau, W. Steenbergen, H. Nilsson, T. Str€omberg, "Laser Doppler perfusion monitoring and imaging: Novel approaches," Med. Biol. Eng. Comput. 45(5), 421–435 (2007).

    [9] S. A. K?ser, P. M. Glauser, C. A. Maurer, "Venous small bowel infarction: Intraoperative laser Doppler flowmetry discriminates critical blood supply and spares bowel length," Case Rep. Med. 2012, 195926 (2012).

    [10] A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, E. U. Rafailov, "Novel measure for the calibration of laser doppler flowmetry devices," Design Qual. Biomed. Technol. VII 8936, 89360D (2014).

    [11] D. M. Hemingway, W. J. Angerson, J. H. Anderson, J. A. Goldberg, C. S. McArdle, T. G. Cooke, "Monitoring blood flow to colorectal liver metastases using laser Doppler flowmetry: The effect of angiotensin II," Br. J. Cancer 66(5), 958–960 (1992).

    [12] S. Palmer, S. G. Sokolovski, E. Rafailov, G. Nabi, "Technologic developments in the field of photonics for the detection of urinary bladder cancer," Clin. Genitourin. Cancer 11(4), 390–396 (2013).

    [13] B. Alsbj€orn, J. Micheels, B. S?rensen, "Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns," Scand. J. Plast. Reconstr. Surg. 18(1), 75–79 (1984).

    [14] N. Vongsavan, B. Matthews, "Some aspects of the use of laser Doppler flow meters for recording tissue blood flow," Exp. Phys.: Transl. Integr. 78(1), 1–14 (1993).

    [15] C. A. Redaelli, M. K. Schilling, M. W. Büchler, "Intraoperative laser Doppler flowmetry: A predictor of ischemic injury in acute mesenteric infarction," Dig. Surg. 15(1), 55–59 (1998).

    [16] M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O'Doherty, P. McNamara, G. E. Nilsson, "Biophotonic methods in microcirculation imaging," Med. Laser Appl. 22(2), 105–126 (2007).

    [17] A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, E. U. Rafailov, "Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices," J. Biomed. Opt. 18(10), 107009–107009 (2013).

    [18] B. Aldhoon, T. Kucera, N. Smorodinova, J. Martinek, V. Melenovsk?, J. Kautzner, "Associations between cardiac fibrosis and permanent atrial fibrillation in advanced heart failure," Physiol. Res. 62(3), 247 (2013).

    [19] T. J. Bunch, J. P. Weiss, B. G. Crandall, J. D. Day, J. P. DiMarco, J. D. Ferguson, P. K. Mason, G. McDaniel, J. S. Osborn, D. Wiggins et al.,"Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia," J. Cardiovasc. Electrophysiol. 21(6), 678–684 (2010).

    [20] D. E. Sosnovik, T. Geva,"Imaging the microstructure of the human fetal heart: An intriguing glimpse into our embryonic cardiac blueprint," Circ. Cardiovasc. Imaging 11, e008298 (2018).

    [21] N. Dana, L. D. Biase, A. Natale, S. Emelianov, R. Bouchard, "In vitro photoacoustic visualization of myocardial ablation lesions," Heart Rhythm. 11(1), 150–157 (2014).

    [22] S. Iskander-Rizk, P. Kruizinga, R. Beurskens, G. Springeling, F. Mastik, N. M. de Groot, P. Knops, A. F. van der Steen, G. van Soest, "Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium," Photoacoustics 16, 100150 (2019).

    [23] G. Rozen, L. Ptaszek, I. Zilberman, K. Cordaro, E. K. Heist, C. Beeckler, A. Altmann, Z. Ying, Z. Liu, J. N. Ruskin, "Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter," Heart Rhythm. 14(2), 248–254 (2017).

    [24] J. Swartling, S. P. P. Platonov, S. B. Olsson, S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

    [25] A. D'Avila, P. Gutierrez, M. Scanavacca, V. Reddy, D. L. Lustgarten, E. Sosa, J. A. F. Ramires, "Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: Implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia," Pacing Clin. Electrophysiol. 25(10), 1488–1495 (2002).

    [26] M. J. Leahy, F. F. M. D. Mul, G. E. Nilsson, R. Maniewski, "Principles and practice of the laser- Doppler perfusion technique," Technol. Health Care 7(2–3), 143–162 (1999).

    [27] M. G. D. Karlsson, H. Casimir-Ahn, U. L€onn, K. Wardell, "Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart," Med. Biol. Eng. Comput. 41(3), 255–262 (2003).

    [28] X.-F. Li, Y.-P. Wang, "Laser Doppler flowmetry for assessment of myocardial microperfusion in the beating rat heart," Vascul. Pharmacol. 46(3), 207–214 (2007).

    [29] M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, R. Maniewski, "Principles and practice of the laser- Doppler perfusion technique," Technol. Health Care 7(2–3), 143–162 (1999).

    [30] I. Fredriksson, M. Larsson, T. Str€omberg, "Measurement depth and volume in laser Doppler flowmetry," Microvasc. Res. 78(1), 4–13 (2009).

    [31] M. G. D. Karlsson, H. Casimir-Ahn, U. L€onn, K. W?rdell, "Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart," Med. Biol. Eng. Comput. 41(3), 255–262 (2003).

    [32] B. Bierbach, J. Scheewe, T. Derfuss, A. Krug, R. Schramm, M. Dahm, W. Kuroczynski, O. Kempski, G. Horstick, "Continuous regional myocardial blood flow measurement: Validation of a near-infrared laser Doppler device in a Porcine model," Microcirculation 19(6), 485–493 (2012).

    [33] M. Hellmann, J. Piotrowski, M. Kaszubowski, M. Dudziak, L. Anisimowicz, "Invasive assessment of the myocardial microcirculation during beating heart coronary artery bypass grafting," J. Clin. Med. 9(3), 663–663 (2020).

    Karina Litvinova, Berthold Stegemann, Francisco Leyva. Assessment of myocardial viability using a minimally invasive laser Doppler flowmetry on pig model[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150001
    Download Citation