• Photonics Research
  • Vol. 10, Issue 10, 2337 (2022)
Kui-Ying Nie1、2、†, Song Luo3、†, Fang-Fang Ren1、4、*, Xuanhu Chen1, Shulin Gu1, Zhanghai Chen3、5、*, Rong Zhang1、3, and Jiandong Ye1、6、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • 2College of Physics & Engineering Technology, Minzu Normal University of Xingyi, Xingyi 562400, China
  • 3Department of Physics, Xiamen University, Xiamen 361005, China
  • 4e-mail:
  • 5e-mail:
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.465401 Cite this Article Set citation alerts
    Kui-Ying Nie, Song Luo, Fang-Fang Ren, Xuanhu Chen, Shulin Gu, Zhanghai Chen, Rong Zhang, Jiandong Ye. Hybrid plasmonic–dielectric metal-nanowire coupler for high-efficiency broadband nonlinear frequency conversion[J]. Photonics Research, 2022, 10(10): 2337 Copy Citation Text show less
    References

    [1] V. J. Sorger, X. Zhang. Spotlight on plasmon lasers. Science, 333, 709-710(2011).

    [2] R. W. Boyd. Nonlinear Optics(2020).

    [3] W. W. Liu, K. Wang, Z. Liu, G. Z. Shen, P. X. Lu. Laterally emitted second harmonic generation in a single ZnTe nanowire. Nano Lett., 13, 4224-4229(2013).

    [4] J. P. Long, B. S. Simpkins, D. J. Rowenhorst, P. E. Pehrsson. Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett., 7, 831-836(2007).

    [5] J. J. Shi, Y. Li, M. Kang, X. B. He, N. J. Halas, P. Nordlander, S. P. Zhang, H. X. Xu. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett., 19, 3838-3845(2019).

    [6] R. Ben-Zvi, O. Bar-Elli, D. Oron, E. Joselevich. Polarity-dependent nonlinear optics of nanowires under electric field. Nat. Commun., 12, 3286(2021).

    [7] X. Liu, Q. Zhang, W. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, T. C. Sum. Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure. ACS Nano, 9, 5018-5026(2015).

    [8] A. Noor, A. R. Damodaran, I. H. Lee, S. A. Maier, S. H. Oh, C. Ciraci. Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas. ACS Photon., 7, 5333-5340(2020).

    [9] M. L. Ren, S. Liu, B. Wang, B. Chen, J. Li, Z. Li. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt. Express, 22, 28653-28661(2014).

    [10] D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E. B. Kley, A. Tuennermann. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett., 15, 1025-1030(2015).

    [11] G. Grinblat, M. Rahmani, E. Cortes, M. Caldarola, D. Comedi, S. A. Maier, A. V. Bragas. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett., 14, 6660-6665(2014).

    [12] C. K. Chen, A. R. B. de Castro, Y. R. Shen. Surface-enhanced second-harmonic generation. Phys. Rev. Lett., 46, 145-148(1981).

    [13] S. Ghimire, D. A. Reis. High-harmonic generation from solids. Nat. Phys., 15, 10-16(2019).

    [14] Y. Pu, R. Grange, C. L. Hsieh, D. Psaltis. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett., 104, 207402(2010).

    [15] W. Pacuski, C. Kruse, S. Figge, D. Hommel. High-reflectivity broadband distributed bragg reflector lattice matched to ZnTe. Appl. Phys. Lett., 94, 191108(2009).

    [16] K. Y. Nie, J. Li, X. Chen, Y. Xu, X. Tu, F. F. Ren, Q. Du, L. Fu, L. Kang, K. Tang, S. Gu, R. Zhang, P. Wu, Y. Zheng, H. Tan, C. Jagadish, J. D. Ye. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas. Sci. Rep., 7, 7503(2017).

    [17] W. W. Liu, K. Wang, H. Long, S. Chu, B. Wang, P. X. Lu. Near-resonant second-order nonlinear susceptibility in c-axis oriented ZnO nanorods. Appl. Phys. Lett., 105, 071906(2014).

    [18] P. Akhter, M. Huang, N. Kadakia, W. Spratt, G. Malladi, H. Bakhru. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures. J. Appl. Phys., 116, 113503(2014).

    [19] J. Li, J. D. Ye, F. F. Ren, D. Tang, Y. Yang, K. Tang, S. Gu, R. Zhang, Y. D. Zheng. Distinct enhancement of sub-bandgap photoresponse through intermediate band in high dose implanted ZnTe:O alloys. Sci. Rep., 7, 44399(2017).

    [20] L. Wu, Y. Wang, L. Liao, T. Hu, S. Luo, J. Wang, Z. Zhang, Z. Chen. Enhanced second-harmonic generation by Fano resonance of polaritons. Appl. Phys. Express, 14, 082002(2021).

    [21] Y. Wang, L. Liao, T. Hu, S. Luo, L. Wu, J. Wang, Z. Zhang, W. Xie, L. Sun, A. V. Kavokin, X. Shen, Z. Chen. Exciton-polariton Fano resonance driven by second harmonic generation. Phys. Rev. Lett., 118, 063602(2017).

    [22] M. Zdanowicz, J. Harra, J. M. Makela, E. Heinonen, T. Ning, M. Kauranen, G. Genty. Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica. Sci. Rep., 4, 5745(2015).

    [23] L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, M. L. Brongersma. Engineering light absorption in semiconductor nanowire devices. Nat. Mater., 8, 643-647(2009).

    [24] D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, J. Tamayo. Silicon nanowires: where mechanics and optics meet at the nanoscale. Sci. Rep., 3, 3445(2013).

    [25] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [26] J. Deng, Y. Tang, S. Chen, K. Li, A. V. Zayats, G. Li. Giant enhancement of second-order nonlinearity of epsilon-near-zero-medium by a plasmonic metasurface. Nano Lett., 20, 5421-5427(2020).

    [27] J. Kneipp, H. Kneipp, K. Kneipp. Surface-Enhanced Raman Scattering: Physics and Applications(2006).

    [28] X. Wang, S. C. Huang, S. Hu, S. Yan, B. Ren. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253-271(2020).

    [29] C. K. Chen, T. F. Heinz, D. Ricard, Y. R. Shen. Surface-enhanced second-harmonic generation and Raman scattering. Phys. Rev. B, 27, 1965-1979(1983).

    [30] J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 293, 1455-1457(2001).

    [31] H. He, X. Q. Zhang, X. Yan, L. L. Huang, C. L. Gu, M. L. Hu, X. Zhang, X. M. Ren, C. Wang. Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources. Appl. Phys. Lett., 103, 143110(2013).

    [32] V. Barzda, R. Cisek, T. L. Spencer, U. Philipose, H. E. Ruda, A. Shik. Giant anisotropy of second harmonic generation for a single ZnSe nanowire. Appl. Phys. Lett., 92, 113111(2008).

    [33] S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, C. M. Che. Broadband second harmonic generation from ZnO nano-tetrapods. Chem. Phys. Lett., 506, 226-229(2011).

    Kui-Ying Nie, Song Luo, Fang-Fang Ren, Xuanhu Chen, Shulin Gu, Zhanghai Chen, Rong Zhang, Jiandong Ye. Hybrid plasmonic–dielectric metal-nanowire coupler for high-efficiency broadband nonlinear frequency conversion[J]. Photonics Research, 2022, 10(10): 2337
    Download Citation