• Journal of Inorganic Materials
  • Vol. 37, Issue 5, 481 (2022)
Yutong WANG1, Feifan ZHANG1, Naicai XU2, Chunxia WANG1..., Lishan CUI1 and Guoyong HUANG1,*|Show fewer author(s)
Author Affiliations
  • 11. State Key Laboratory of Heavy Oil, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
  • 22. School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
  • show less
    DOI: 10.15541/jim20210502 Cite this Article
    Yutong WANG, Feifan ZHANG, Naicai XU, Chunxia WANG, Lishan CUI, Guoyong HUANG. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(5): 481 Copy Citation Text show less
    Potential-pH diagram of typical electrode materials
    1. Potential-pH diagram of typical electrode materials
    Crystal structure of LiTi2(PO4)3[17]
    2. Crystal structure of LiTi2(PO4)3[17]
    Schematical illustration of the fabrication process of lithium titranium phosphate nanowires (LTPNMs)[38]
    3. Schematical illustration of the fabrication process of lithium titranium phosphate nanowires (LTPNMs)[38]
    Schematic diagram of electrospinning (a), comparison of rate performance between LiTi2(PO4)3 fibers and particles (b)[24]
    4. Schematic diagram of electrospinning (a), comparison of rate performance between LiTi2(PO4)3 fibers and particles (b)[24]
    Comparison chart of rate performance of four coated carbon sources
    5. Comparison chart of rate performance of four coated carbon sources
    Discharge capacity for successive cycling at different current densities (a), long-term cycling behavior at current densities of 4 and 6 A·g-1 (b) of LiTi2(PO4)3/C and LiTi1.8Sn0.2(PO4)3/C[24]
    6. Discharge capacity for successive cycling at different current densities (a), long-term cycling behavior at current densities of 4 and 6 A·g-1 (b) of LiTi2(PO4)3/C and LiTi1.8Sn0.2(PO4)3/C[24]
    TypeOperating voltage/VSafetyElectrolyteSolventCost
    Organic Li-ion battery3.6-4.2LowLiPF6, LiAsF6, etcEC, DMC, DEC, etcHigh
    Aqeuous Li-ion battery1.5-2.0HighLi2SO4, LiNO3, etcH2OModerate
    Table 1. Comparison of the characteristics of aqeuous and organic lithium-ion batteries[8]
    Anode materialSpecific capacity/ (mAh·g-1)Potential/V(vs. Li+/Li)Potential/V(vs. NHE)Features
    LiTi2(PO4)31382.5-0.5Moderate specific capacity, stable framework
    TiP2O71212.6-0.4Low specific capacity, high Li-intercalation potential
    VO22502.6-0.4High specific capacity, poor cycling performance
    LiV3O82502.6-0.4Fragile during cycling
    Table 2. Parameters of some anode materials for aqeuous lithium-ion battery[14]
    MethodStarting materialsProduct characteristicFeaturesRef.
    Li sourceTi sourceP sourceMorphology
    Solid stateLiH2PO4TiO2NH4H2PO4Irregular particlesLong calcination time, high temperature[20]
    Sol-GelCH3COOLiTi(C4H9O)4H3PO4ParticlesShort calcination time, low temperature[21]
    Hydrothermal synthesisCH3COOLiTi(C4H9O)4NH4H2PO4Regular particlesRegular particle morphology, great crystallinity[22]
    Co-precipitation methodLiOHTi(C4H9O)4H3PO4ParticlesRequiring precise control[23]
    ElectrospinningCH3COOLiTi(C4H9O)4NH4H2PO4FiberIdeal electrochemical performance, difficult industrialization[24]
    Table 3. Comparison of common synthetic methods of LiTi2(PO4)3
    Calcination parameterCoating methodCarbon sourceWeight percentage of carbon/%Current density/(mA·g-1)Specific capacity (cycles)/(mAh·g-1)Capacity retention/%Ref.
    800 ℃-12 hIn-situCitric acid6.2138106.1(1)-89(1300)84[36]
    900 ℃-12 hEx-situToluene12700100(1)-83(200)83[31]
    800 ℃-12 hEx-situAcetylene Black18140106.3(1)-86.5(100)81[81]
    850 ℃-12 hEx-situAcetylene Black-140091.3(1)-74.4(100)81[82]
    700 ℃-12 hIn-situPitch17.51380107(1)-75.5(1000)70[83]
    550 ℃-24 hIn-situSucrose3.51400110(1)-104(800)94[17]
    750 ℃-5 hIn-situPolyaniline5.9276115.2(1)-94.6(1000)82[84]
    750 ℃-5 hIn-situPolyacrylonitrile5.969095(1)-82.1(1000)86[85]
    900 ℃-12 hIn-situGraphene oxide1.79~1380110(1)-100(100)91[78]
    800 ℃-10 hIn-situGraphene oxide-~276105(1)-97.86(100)93.2[77]
    700 ℃-5 hIn-situGraphene oxide, phenolic resin16.2~690101.1(1)-78(1000)77.2[80]
    800 ℃-8 hEx-situβ-Cyclodextrin3.13~690120(1)-(200)111.388.7[86]
    Table 4. Comparison of electrochemical performance of different carbon sources and coating methods by Sol-Gel
    Yutong WANG, Feifan ZHANG, Naicai XU, Chunxia WANG, Lishan CUI, Guoyong HUANG. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(5): 481
    Download Citation