• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026007 (2023)
Haiyang Liu1、2, Zongnan Zhang1, Yingqiu Li1, Yaping Wu1、*, Zhiming Wu1、*, Xu Li1, Chunmiao Zhang1, Feiya Xu1, and Junyong Kang1
Author Affiliations
  • 1Xiamen University, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen, China
  • 2Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
  • show less
    DOI: 10.1117/1.APN.2.2.026007 Cite this Article Set citation alerts
    Haiyang Liu, Zongnan Zhang, Yingqiu Li, Yaping Wu, Zhiming Wu, Xu Li, Chunmiao Zhang, Feiya Xu, Junyong Kang. Controllable valley magnetic response in phase-transformed tungsten diselenide[J]. Advanced Photonics Nexus, 2023, 2(2): 026007 Copy Citation Text show less
    References

    [1] X. Xu et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 10, 343-350(2014).

    [2] F. K. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 10, 216-226(2016).

    [3] T. Cao et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 3, 887(2012).

    [4] A. Ciarrocchi et al. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater., 7, 449-464(2022).

    [5] S. Zhao et al. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Rep. Prog. Phys., 84, 026401(2021).

    [6] T. Wen et al. Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas. Sci. Adv., 6, eaao0019(2020). https://doi.org/10.1126/sciadv.aao0019

    [7] M. Deng et al. Plasmonic modulation of valleytronic emission in two-dimensional transition metal dichalcogenides. Adv. Funct. Mater., 31, 2010234(2021).

    [8] M. K. McCreary et al. Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano, 11, 7988-7994(2017).

    [9] R. C. Zhu et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B, 88, 121301(2013). https://doi.org/10.1103/PhysRevB.88.121301

    [10] L. Du et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys., 3, 193-206(2021).

    [11] R. J. Schaibley et al. Valleytronics in 2D materials. Nat. Rev. Mater., 1, 16055(2016).

    [12] V. A. M. Stier et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun., 7, 10643(2016). https://doi.org/10.1038/ncomms10643

    [13] J.-X. Li et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat. Nanotechnol., 17, 721-728(2022). https://doi.org/10.1038/s41565-022-01115-2

    [14] Y. Ye et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol., 11, 598-602(2016).

    [15] L. O. Sanchez et al. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 16, 5792-5797(2016).

    [16] X. Wu et al. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater., 33, 2008376(2021).

    [17] S. Cho et al. Phase patterning for ohmic homojunction contact in MoTe2. Science, 349, 6248(2015).

    [18] S. Yan et al. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett., 106, 012408(2015). https://doi.org/10.1063/1.4905656

    [19] V. Kochat et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater., 29, 1703754(2017).

    [20] S. Tongay et al. Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett., 101, 123105(2012). https://doi.org/10.1063/1.4753797

    [21] I. Khan, B. Marfoua, J. Hong. Electric field induced giant valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure. NPJ 2D Mater. Appl., 5, 10(2021). https://doi.org/10.1038/s41699-020-00195-9

    [22] B. Marfoua, J. Hong. Electric filed [sic] dependent valley polarization in 2D WSe2/CrGeTe3 heterostructure. Nanotechnology, 31, 425702(2020). https://doi.org/10.1088/1361-6528/aba0f4

    [23] H. Liu et al. Enhanced valley splitting in monolayer WSe2 by phase engineering. ACS Nano, 15, 8244-8251(2021). https://doi.org/10.1021/acsnano.0c08305

    [24] J. Y. Park et al. Synthesis of 1T WSe2 on an oxygen-containing substrate using a single precursor. ACS Nano, 16, 11059-11065(2022). https://doi.org/10.1021/acsnano.2c03762

    [25] M. Acerce, D. Voiry, M. Chhowalla. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol., 10, 313-318(2015). https://doi.org/10.1038/nnano.2015.40

    [26] S. Cho et al. Phase patterning for ohmic homojunction contact in MoTe2. Science, 349, 625-628(2015). https://doi.org/10.1126/science.aab3175

    [27] W. Li, X. Qian, J. Li. Phase transitions in 2D materials. Nat. Rev. Mater., 6, 829-846(2021).

    [28] L. Zhang, J. Dong, F. Ding. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev., 121, 6321-6372(2021).

    [29] Y. Yin et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc., 138, 7965-7972(2016).

    [30] J. Luxa et al. Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS2 and WS2. Nanoscale, 8, 1960-1967(2016). https://doi.org/10.1039/C5NR05757D

    [31] A. D. Henckel, O. Lenz, M. B. Cossairt. Effect of ligand coverage on hydrogen evolution catalyzed by colloidal WSe2. ACS Catal., 7, 2815-2820(2017). https://doi.org/10.1021/acscatal.7b00074

    [32] H. Zeng et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7, 490-493(2012). https://doi.org/10.1038/nnano.2012.95

    [33] F. K. Mak et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 7, 494-498(2012). https://doi.org/10.1038/nnano.2012.96

    [34] M. A. Jones et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol., 8, 634-638(2013). https://doi.org/10.1038/nnano.2013.151

    [35] G. Aivazian et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 11, 148-152(2015). https://doi.org/10.1038/nphys3201

    [36] K. Shinokita et al. Continuous control and enhancement of excitonic valley polarization in monolayer WSe2 by electrostatic doping. Adv. Funct. Mater., 29, 1900260(2019). https://doi.org/10.1002/adfm.201900260

    [37] M. Manca et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun., 8, 1-7(2017). https://doi.org/10.1038/ncomms14927

    [38] H. Yu et al. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun., 5, 3876(2014).

    [39] P. Back et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys. Rev. Lett., 118, 237404(2017). https://doi.org/10.1103/PhysRevLett.118.237404

    [40] B. Ouyang. Phase engineering of low dimensional transition metal dichalcogenides(2017).

    [41] H. G. Nam. Phase-controlled synthesis for 1T’ phase MoS2 and MoSe2 crystals(2018).

    [42] J. Zhu et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc., 139, 10216-10219(2017). https://doi.org/10.1021/jacs.7b05765

    [43] H. Nan et al. Soft hydrogen plasma induced phase transition in monolayer and few-layer MoTe2. Nanotechnology, 30, 034004(2019). https://doi.org/10.1088/1361-6528/aaebc5

    [44] L. Cai et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc., 137, 2622-2627(2015). https://doi.org/10.1021/ja5120908

    Haiyang Liu, Zongnan Zhang, Yingqiu Li, Yaping Wu, Zhiming Wu, Xu Li, Chunmiao Zhang, Feiya Xu, Junyong Kang. Controllable valley magnetic response in phase-transformed tungsten diselenide[J]. Advanced Photonics Nexus, 2023, 2(2): 026007
    Download Citation