Ying Zhang, Lingli Ba, Quanlong Yang, Jiaguang Han. From Far-Field to Near-Field: Terahertz Wavefront Control with Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811005
Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 18, 1811005 (2023)
Fig. 1. Different application scenarios and control methods of terahertz wavefront control with metasurface
Fig. 2. Terahertz metasurface deflectors and lenses. (a) Terahertz metasurface deflector[8]; (b)(c) terahertz metal metasurface lens[10,12]; (d) terahertz Huygens metasurface lens[25]; (e) terahertz achromatic metasurface lens[32]
Fig. 3. Terahertz holographic metasurfaces. (a) Terahertz holographic metasurface with simultaneously modulated amplitude and phase[40]; (b) longitudinal movement of holographic pattern from terahertz metasurface[41]; (c) terahertz holographic metasurface with full-parameter control[42]; (d) terahertz chiral holographic metasurfaces[43]
Fig. 4. Terahertz multiplexing devices. (a) Terahertz polarization multiplexing active multifunctional device[47]; (b) terahertz polarization multiplexing metasurface[48]; (c) terahertz mode division multiplexing device[54]; (d) terahertz OAM multiplexing device[55]
Fig. 5. Terahertz special beams. (a) Terahertz Bessel beam[25]; (b) terahertz Airy beam[62]; (c) terahertz vortex beam[65]; (d) terahertz Lorentz beam[67]
Fig. 6. Nonlinear terahertz wavefront control. (a) Control of wavefronts with nonlinear terahertz photonic crystals[74]; (b) nonlinear terahertz optical beam splitting and vortex beam generation[76]; (c) nonlinear terahertz Fresnel bands sheet[77]; (d) nonlinear terahertz chirality and nonlinear metasurfaces[79]
Fig. 7. Terahertz surface plasmon polariton couplers. (a) Surface plasmon excitation unit[100]; (b) polarization dependent coupler (the wavefronts are different under normal incidences of circular polarization with different directions of the rotation)[100]; (c) surface plasmon lenses based on slit-pair column[101]; (d) complex surface plasmon holography imaging[102]; (e)(f) surface plasmon polariton coupler consisting of C-shape slit resonators[103]
Fig. 8. Terahertz surface plasmon polariton couplers. (a) A coupled resonator pair composed of a slit resonator and a split-ring shaped resonator can realize asymmetric excitation[104]; (b) surface plasmon polariton focusing structure using resonant coupler as the basic unit[104]; (c) split-ring shaped resonator with mirror distribution[105]; (d) asymmetric excitation under different polarized light incidence[105]
Fig. 9. Plasmonic vortex. (a) Plasmonic vortex generated by circular-shaped slit arrays and Archimedes spiral-shaped slit arrays[111]; (b) two plasmonic vortices generated by controlling geometric phase[112]; (c) two plasmonic vortex couplers generated from two circular-shaped slit arrays with different radius[113]; (d) arbitrary topological charge resulted from the interference between plasmonic vortices came from two couplers[113]; (e)(f) temporal evolution progress of plasmonic vortices controlled by couplers with different structures[114]
Fig. 10. Spoof surface plasmon polariton functional devices. (a) A series of waveguides based on spoof surface plasmon polaritons: straight waveguide, S-bend waveguide, Y-splitter and directional coupler[123]; (b) logic gate[125]; (c) wavelength diplexer[96]; (d) 1×2 splitter with controlled splitting ratio[126]; (e) (f) spoof surface plasmon polariton lenses based on gradient index[127-128]
Set citation alerts for the article
Please enter your email address