• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811005 (2023)
Ying Zhang1, Lingli Ba2, Quanlong Yang2、*, and Jiaguang Han3、4
Author Affiliations
  • 1Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan , China
  • 2School of Physics and Electronics, Central South University, Changsha 417100, Hunan , China
  • 3College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 4School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • show less
    DOI: 10.3788/LOP231640 Cite this Article Set citation alerts
    Ying Zhang, Lingli Ba, Quanlong Yang, Jiaguang Han. From Far-Field to Near-Field: Terahertz Wavefront Control with Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811005 Copy Citation Text show less
    Different application scenarios and control methods of terahertz wavefront control with metasurface
    Fig. 1. Different application scenarios and control methods of terahertz wavefront control with metasurface
    Terahertz metasurface deflectors and lenses. (a) Terahertz metasurface deflector[8]; (b)(c) terahertz metal metasurface lens[10,12]; (d) terahertz Huygens metasurface lens[25]; (e) terahertz achromatic metasurface lens[32]
    Fig. 2. Terahertz metasurface deflectors and lenses. (a) Terahertz metasurface deflector[8]; (b)(c) terahertz metal metasurface lens[10,12]; (d) terahertz Huygens metasurface lens[25]; (e) terahertz achromatic metasurface lens[32]
    Terahertz holographic metasurfaces. (a) Terahertz holographic metasurface with simultaneously modulated amplitude and phase[40]; (b) longitudinal movement of holographic pattern from terahertz metasurface[41]; (c) terahertz holographic metasurface with full-parameter control[42]; (d) terahertz chiral holographic metasurfaces[43]
    Fig. 3. Terahertz holographic metasurfaces. (a) Terahertz holographic metasurface with simultaneously modulated amplitude and phase[40]; (b) longitudinal movement of holographic pattern from terahertz metasurface[41]; (c) terahertz holographic metasurface with full-parameter control[42]; (d) terahertz chiral holographic metasurfaces[43]
    Terahertz multiplexing devices. (a) Terahertz polarization multiplexing active multifunctional device[47]; (b) terahertz polarization multiplexing metasurface[48]; (c) terahertz mode division multiplexing device[54]; (d) terahertz OAM multiplexing device[55]
    Fig. 4. Terahertz multiplexing devices. (a) Terahertz polarization multiplexing active multifunctional device[47]; (b) terahertz polarization multiplexing metasurface[48]; (c) terahertz mode division multiplexing device[54]; (d) terahertz OAM multiplexing device[55]
    Terahertz special beams. (a) Terahertz Bessel beam[25]; (b) terahertz Airy beam[62]; (c) terahertz vortex beam[65]; (d) terahertz Lorentz beam[67]
    Fig. 5. Terahertz special beams. (a) Terahertz Bessel beam[25]; (b) terahertz Airy beam[62]; (c) terahertz vortex beam[65]; (d) terahertz Lorentz beam[67]
    Nonlinear terahertz wavefront control. (a) Control of wavefronts with nonlinear terahertz photonic crystals[74]; (b) nonlinear terahertz optical beam splitting and vortex beam generation[76]; (c) nonlinear terahertz Fresnel bands sheet[77]; (d) nonlinear terahertz chirality and nonlinear metasurfaces[79]
    Fig. 6. Nonlinear terahertz wavefront control. (a) Control of wavefronts with nonlinear terahertz photonic crystals[74]; (b) nonlinear terahertz optical beam splitting and vortex beam generation[76]; (c) nonlinear terahertz Fresnel bands sheet[77]; (d) nonlinear terahertz chirality and nonlinear metasurfaces[79]
    Terahertz surface plasmon polariton couplers. (a) Surface plasmon excitation unit[100]; (b) polarization dependent coupler (the wavefronts are different under normal incidences of circular polarization with different directions of the rotation)[100]; (c) surface plasmon lenses based on slit-pair column[101]; (d) complex surface plasmon holography imaging[102]; (e)(f) surface plasmon polariton coupler consisting of C-shape slit resonators[103]
    Fig. 7. Terahertz surface plasmon polariton couplers. (a) Surface plasmon excitation unit[100]; (b) polarization dependent coupler (the wavefronts are different under normal incidences of circular polarization with different directions of the rotation)[100]; (c) surface plasmon lenses based on slit-pair column[101]; (d) complex surface plasmon holography imaging[102]; (e)(f) surface plasmon polariton coupler consisting of C-shape slit resonators[103]
    Terahertz surface plasmon polariton couplers. (a) A coupled resonator pair composed of a slit resonator and a split-ring shaped resonator can realize asymmetric excitation[104]; (b) surface plasmon polariton focusing structure using resonant coupler as the basic unit[104]; (c) split-ring shaped resonator with mirror distribution[105]; (d) asymmetric excitation under different polarized light incidence[105]
    Fig. 8. Terahertz surface plasmon polariton couplers. (a) A coupled resonator pair composed of a slit resonator and a split-ring shaped resonator can realize asymmetric excitation[104]; (b) surface plasmon polariton focusing structure using resonant coupler as the basic unit[104]; (c) split-ring shaped resonator with mirror distribution[105]; (d) asymmetric excitation under different polarized light incidence[105]
    Plasmonic vortex. (a) Plasmonic vortex generated by circular-shaped slit arrays and Archimedes spiral-shaped slit arrays[111]; (b) two plasmonic vortices generated by controlling geometric phase[112]; (c) two plasmonic vortex couplers generated from two circular-shaped slit arrays with different radius[113]; (d) arbitrary topological charge resulted from the interference between plasmonic vortices came from two couplers[113]; (e)(f) temporal evolution progress of plasmonic vortices controlled by couplers with different structures[114]
    Fig. 9. Plasmonic vortex. (a) Plasmonic vortex generated by circular-shaped slit arrays and Archimedes spiral-shaped slit arrays[111]; (b) two plasmonic vortices generated by controlling geometric phase[112]; (c) two plasmonic vortex couplers generated from two circular-shaped slit arrays with different radius[113]; (d) arbitrary topological charge resulted from the interference between plasmonic vortices came from two couplers[113]; (e)(f) temporal evolution progress of plasmonic vortices controlled by couplers with different structures[114]
    Spoof surface plasmon polariton functional devices. (a) A series of waveguides based on spoof surface plasmon polaritons: straight waveguide, S-bend waveguide, Y-splitter and directional coupler[123]; (b) logic gate[125]; (c) wavelength diplexer[96]; (d) 1×2 splitter with controlled splitting ratio[126]; (e) (f) spoof surface plasmon polariton lenses based on gradient index[127-128]
    Fig. 10. Spoof surface plasmon polariton functional devices. (a) A series of waveguides based on spoof surface plasmon polaritons: straight waveguide, S-bend waveguide, Y-splitter and directional coupler[123]; (b) logic gate[125]; (c) wavelength diplexer[96]; (d) 1×2 splitter with controlled splitting ratio[126]; (e) (f) spoof surface plasmon polariton lenses based on gradient index[127-128]
    Ying Zhang, Lingli Ba, Quanlong Yang, Jiaguang Han. From Far-Field to Near-Field: Terahertz Wavefront Control with Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811005
    Download Citation