• Laser & Optoelectronics Progress
  • Vol. 57, Issue 2, 21014 (2020)
Liu Kewen1、2, Ma Yuan1、2, Xiong Hongxia3、*, Yan Zejun4, Zhou Zhijun5, Liu Chaoyang6, Fang Panpan1、2, Li Xiaojun1、2, and Chen Yalei1、2
Author Affiliations
  • 1School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 2Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 3School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 4Department of Urology, Ningbo First Hospital, Key Laboratory of Translational Medicine of Urological Diseases in Ningbo, Ningbo, Zhejiang 315010, China
  • 5Department of Urology, the First People''s Hospital of Tianmen, Tianmen, Hubei 431700, China
  • 6State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • show less
    DOI: 10.3788/LOP57.021014 Cite this Article Set citation alerts
    Liu Kewen, Ma Yuan, Xiong Hongxia, Yan Zejun, Zhou Zhijun, Liu Chaoyang, Fang Panpan, Li Xiaojun, Chen Yalei. Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network[J]. Laser & Optoelectronics Progress, 2020, 57(2): 21014 Copy Citation Text show less
    References

    [1] Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 20, 21-36(2003).

    [2] Bai Y C, Zhang Y Q, Ding M L et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11217, 210-226(2018).

    [3] Mudunuri S P, Biswas S. Low resolution face recognition across variations in pose and illumination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1034-1040(2016).

    [4] Greenspan H. Super-resolution in medical imaging[J]. The Computer Journal, 52, 43-63(2008).

    [5] Chen J, Gao H B, Wang W G et al. Methods and applications of image super-resolution restoration[J]. Laser & Optoelectronics Progress, 52, 020004(2015).

    [6] Xi Z H, Hou C Y, Yuan K P et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 39, 0210003(2019).

    [7] Song P F, Trzasko J D, Manduca A et al. Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65, 149-167(2018).

    [8] Zhang Y Q, Shi F, Cheng J et al. Longitudinally guided super-resolution of neonatal brain magnetic resonance images[J]. IEEE Transactions on Cybernetics, 49, 662-674(2019).

    [9] Oktay O, Ferrante E, Kamnitsas K et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation[J]. IEEE Transactions on Medical Imaging, 37, 384-395(2018).

    [10] Dencks S, Piepenbrock M, Opacic T et al. Clinical pilot application of super-resolution US imaging in breast cancer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 517-526(2019).

    [11] Chu J H, Hu F S, Zhang J Q et al. An improved single-frame super-resolution algorithm for magnetic resonance image[J]. Laser & Optoelectronics Progress, 55, 051009(2018).

    [12] Dai S Y, Han M, Xu W et al. SoftCuts: a soft edge smoothness prior for color image super-resolution[J]. IEEE Transactions on Image Processing, 18, 969-981(2009).

    [13] Purkait P, Chanda B. Super resolution image reconstruction through Bregman iteration using morphologic regularization[J]. IEEE Transactions on Image Processing, 21, 4029-4039(2012).

    [14] Yang J C, Wright J, Huang T S et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 19, 2861-2873(2010).

    [15] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [16] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 1646-1654(2016).

    [17] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 1874-1883(2016).

    [18] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer, 9906, 391-407(2016).

    [19] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [20] Ledig C, Theis L, Huszar F et al. Photo-realistic single image super-resolution using a generative adversarial network. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 105-114(2017).

    [21] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 1132-1140(2017).

    [22] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Salt Lake City, Utah. New York: IEEE, 7132-7141(2018).

    [23] Clevert D A, Unterthiner T, Hochreiter S. Fast. -02-22)[2019-06-03]. https:∥arxiv., org/abs/1511, 07289(2016).

    [24] Hiai F, Lin M. On an eigenvalue inequality involving the Hadamard product[J]. Linear Algebra and its Applications, 515, 313-320(2017).

    [25] Zhao H, Gallo O, Frosio I et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 3, 47-57(2017).

    [26] Kingma D P. -01-30)[2019-06-03]. https:∥arxiv., org/abs/1412, 6980(2017).

    [27] Data science bowl 2017[EB/OL]. bowl 2017[EB/OL][2019-06-03]. https:∥www.kaggle.com/c/data-science-bowl-(2017).

    [28] L Geert, D Oscar, B Jelle et al. 2019-06-03)(2017). https://doi.org/10.7937/k9tcia.2017.murs5cl.

    [29] Pomi A, Slusallek P. Interactive ray tracing for virtual TV studio applications[J]. JVRB-Journal of Virtual Reality and Broadcasting, 2, 1-10(2005).

    Liu Kewen, Ma Yuan, Xiong Hongxia, Yan Zejun, Zhou Zhijun, Liu Chaoyang, Fang Panpan, Li Xiaojun, Chen Yalei. Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network[J]. Laser & Optoelectronics Progress, 2020, 57(2): 21014
    Download Citation