• Laser & Optoelectronics Progress
  • Vol. 61, Issue 10, 1000001 (2024)
Chengfeng Li1、2、3, Tao He1、2、3、*, Yuzhi Shi1、2、3, Zeyong Wei1、2、3, Zhanshan Wang1、2、3, and Xinbin Cheng1、2、3、**
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    DOI: 10.3788/LOP232217 Cite this Article Set citation alerts
    Chengfeng Li, Tao He, Yuzhi Shi, Zeyong Wei, Zhanshan Wang, Xinbin Cheng. China's Top Ten Advances in Optics: Research Progress on Optical Applications of Anomalous Deflection Metasurfaces (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000001 Copy Citation Text show less
    References

    [1] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [2] Menzel C, Rockstuhl C, Paul T et al. Retrieving effective parameters for metamaterials at oblique incidence[J]. Physical Review B, 77, 195328(2008).

    [3] Valentine J, Zhang S, Zentgraf T et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 455, 376-379(2008).

    [4] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [5] Tseng M L, Hsiao H H, Chu C H et al. Metalenses: advances and applications[J]. Advanced Optical Materials, 6, 1800554(2018).

    [6] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [7] Chen S Q, Li Z C, Liu W W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, e1802458(2019).

    [8] Chen W T, Capasso F. Will flat optics appear in everyday life anytime soon?[J]. Applied Physics Letters, 118, 100503(2021).

    [9] Luo X G, Pu M B, Guo Y H et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 8, 2001194(2020).

    [10] Wu Y K, Yang W H, Fan Y B et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 5, eaax0939(2019).

    [11] Ou K, Wan H Y, Wang G F et al. Advances in meta-optics and metasurfaces: fundamentals and applications[J]. Nanomaterials, 13, 1235(2023).

    [12] Qin J, Jiang S B, Wang Z S et al. Metasurface micro/nano-optical sensors: principles and applications[J]. ACS Nano, 16, 11598-11618(2022).

    [13] He T, Zhang Z Y, Zhu J Y et al. Scattering exceptional point in the visible[J]. Light: Science & Applications, 12, 229(2023).

    [14] Feng Z W, Shi T, Geng G Z et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces[J]. eLight, 3, 21(2023).

    [15] Li L L, Zhao H T, Liu C et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2, 7(2022).

    [16] Shi T, Wang Y J, Deng Z L et al. All-dielectric kissing-dimer metagratings for asymmetric high diffraction[J]. Advanced Optical Materials, 7, 1901389(2019).

    [17] Chalabi H, Ra’di Y, Sounas D L et al. Efficient anomalous reflection through near-field interactions in metasurfaces[J]. Physical Review B, 96, 075432(2017).

    [18] Nemilentsau A, Low T. Broadband achromatic anomalous mirror in near-IR and visible frequency ranges[J]. ACS Photonics, 4, 1646-1652(2017).

    [19] Patri A, Kéna-Cohen S, Caloz C. Large-angle, broadband, and multifunctional directive waveguide scatterer gratings[J]. ACS Photonics, 6, 3298-3305(2019).

    [20] Dai Y H, He T, Wei Z et al. Anomalous reflection with customized high-efficiency bandwidth[J]. Optics Letters, 48, 956-959(2023).

    [21] Zhang Z Y, Liang H G, He T et al. Photonic spin Hall effect based on broadband high-efficiency reflective metasurfaces[J]. Applied Optics, 59, A63-A68(2019).

    [22] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [23] Li K, Guo Y H, Pu M B et al. Dispersion controlling meta-lens at visible frequency[J]. Optics Express, 25, 21419-21427(2017).

    [24] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [25] Wang Y J, Chen Q M, Yang W H et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 12, 5560(2021).

    [26] Khorasaninejad M, Chen W T, Devlin R et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [27] Shen Y, Luo X G. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 366, 174-178(2016).

    [28] Xiong B, Xu Y H, Wang J N et al. Realizing colorful holographic mimicry by metasurfaces[J]. Advanced Materials, 33, 2005864(2021).

    [29] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [30] Feng C, He T, Shi Y Z et al. Diatomic metasurface for efficient six-channel modulation of Jones matrix[J]. Laser & Photonics Reviews, 17, 2200955(2023).

    [31] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).

    [32] Shi Y Z, Zhu T T, Zhang T H et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation[J]. Light: Science & Applications, 9, 62(2020).

    [33] Shi Y Z, Xiong S, Zhang Y et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement[J]. Nature Communications, 9, 815(2018).

    [34] Luo H, Fang X, Li C F et al. 1 nm-resolution sorting of sub-10 nm nanoparticles using a dielectric metasurface with toroidal responses[J]. Small Science, 3, 2300100(2023).

    [35] Zhu Y C, You M M, Shi Y Z et al. Optofluidic tweezers: efficient and versatile micro/nano-manipulation tools[J]. Micromachines, 14, 1326(2023).

    [36] Shen Y, Kim A D, Shahili M et al. THz time-domain characterization of amplifying quantum-cascade metasurface[J]. Applied Physics Letters, 119, 181108(2021).

    [37] Wu Y, Shen Y, Addamane S et al. Tunable quantum-cascade VECSEL operating at 1.9 THz[J]. Optics Express, 29, 34695-34706(2021).

    [38] Wang Y M, Zhou G Y, Zhang X S et al. 2D broadband beamsteering with large-scale MEMS optical phased array[J]. Optica, 6, 557-562(2019).

    [39] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [40] Kang M, Ra’di Y, Farfan D et al. Efficient focusing with large numerical aperture using a hybrid metalens[J]. Physical Review Applied, 13, 044016(2020).

    [41] de Galarreta C R, Alexeev A M, Au Y Y et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 28, 1704993(2018).

    [42] Paniagua-Domínguez R, Yu Y F, Khaidarov E et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 18, 2124-2132(2018).

    [43] Ding F, Deshpande R, Meng C et al. Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality[J]. Nanoscale, 12, 14106-14111(2020).

    [44] Yao Z, Xia X C, Hou Y P et al. Metasurface-enhanced optical lever sensitivity for atomic force microscopy[J]. Nanotechnology, 30, 365501(2019).

    [45] Pors A, Albrektsen O, Radko I P et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 3, 2155(2013).

    [46] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).

    [47] Li Z W, Huang L R, Lu K et al. Continuous metasurface for high-performance anomalous reflection[J]. Applied Physics Express, 7, 112001(2014).

    [48] Ho Y Z, Cheng B H, Hsu W L et al. Anomalous reflection from metasurfaces with gradient phase distribution below 2π[J]. Applied Physics Express, 9, 072502(2016).

    [49] He T, Wei Z Y, Wang Z S et al. Research progress on anomalous deflection of optical metasurfaces[J]. Optics and Precision Engineering, 30, 2626-2638(2022).

    [50] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [51] Sell D, Yang J J, Doshay S et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 17, 3752-3757(2017).

    [52] Epstein A, Eleftheriades G V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection[J]. Physical Review Letters, 117, 256103(2016).

    [53] Wong A M, Eleftheriades G V. Perfect anomalous reflection with a bipartite Huygens’ metasurface[J]. Physical Review X, 8, 011036(2018).

    [54] Kwon D H, Tretyakov S A. Perfect reflection control for impenetrable surfaces using surface waves of orthogonal polarization[J]. Physical Review B, 96, 085438(2017).

    [55] He T, Liu T, Xiao S Y et al. Perfect anomalous reflectors at optical frequencies[J]. Science Advances, 8, eabk3381(2022).

    [56] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [57] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [58] Mohammadi Estakhri N, Alù A. Wave-front transformation with gradient metasurfaces[J]. Physical Review X, 6, 041008(2016).

    [59] Qin F, Ding L, Zhang L et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2, e1501168(2016).

    [60] Gao S, Lee S S, Kim E S et al. Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection[J]. Nanoscale, 10, 12453-12460(2018).

    [61] Lin D, Fan P, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [62] Shalaev M I, Sun J B, Tsukernik A et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 15, 6261-6266(2015).

    [63] Zhou Z P, Li J T, Su R B et al. Efficient silicon metasurfaces for visible light[J]. ACS Photonics, 4, 544-551(2017).

    [64] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [65] Sun S, Zhou Z X, Zhang C et al. All-dielectric meta-reflectarray for efficient control of visible light[J]. Annalen Der Physik, 530, 1700418(2018).

    [66] Li Z Y, Palacios E, Butun S et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Letters, 15, 1615-1621(2015).

    [67] Díaz-Rubio A, Asadchy V S, Elsakka A et al. From the generalized reflection law to the realization of perfect anomalous reflectors[J]. Science Advances, 3, e1602714(2017).

    [68] Asadchy V S, Wickberg A, Díaz-Rubio A et al. Eliminating scattering loss in anomalously reflecting optical metasurfaces[J]. ACS Photonics, 4, 1264-1270(2017).

    [69] Fan Z Y, Shcherbakov M R, Allen M et al. Perfect diffraction with multiresonant bianisotropic metagratings[J]. ACS Photonics, 5, 4303-4311(2018).

    [70] Yang J J, Sell D, Fan J A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering[J]. Annalen Der Physik, 530, 1700302(2018).

    [71] Sell D, Yang J J, Wang E W et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces[J]. ACS Photonics, 5, 2402-2407(2018).

    [72] Fan J A. Freeform metasurface design based on topology optimization[J]. MRS Bulletin, 45, 196-201(2020).

    [73] Wen F F, Jiang J Q, Fan J A. Robust freeform metasurface design based on progressively growing generative networks[J]. ACS Photonics, 7, 2098-2104(2020).

    [74] Yang J J, Fan J A. Topology-optimized metasurfaces: impact of initial geometric layout[J]. Optics Letters, 42, 3161-3164(2017).

    [75] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).

    [76] Huang Y W, Lee H W H, Sokhoyan R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 16, 5319-5325(2016).

    [77] Park J, Jeong B G, Kim S I et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 16, 69-76(2021).

    [78] Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 5, 1742-1748(2018).

    [79] Li S Q, Xu X W, Veetil R M et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [80] Wu P C, Pala R A, Kafaie Shirmanesh G et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 10, 3654(2019).

    [81] Holsteen A L, Fatih C A, Brongersma M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 365, 257-260(2019).

    [82] Yin X H, Steinle T, Huang L L et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 6, e17016(2017).

    [83] Liu Z Y, Zhang C, Zhu W Q et al. Compact stereo waveguide display based on a unidirectional polarization-multiplexed metagrating In-coupler[J]. ACS Photonics, 8, 1112-1119(2021).

    [84] Boo H, Lee Y S, Yang H B et al. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses[J]. Scientific Reports, 12, 5832(2022).

    [85] Spägele C, Tamagnone M, Kazakov D et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces[J]. Nature Communications, 12, 3787(2021).

    [86] Xie Y Y, Ni P N, Wang Q H et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J]. Nature Nanotechnology, 15, 125-130(2020).

    [87] Khaidarov E, Liu Z T, Paniagua-Domínguez R et al. Control of LED emission with functional dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900235(2020).

    [88] Faraji-Dana M, Arbabi E, Arbabi A et al. Compact folded metasurface spectrometer[J]. Nature Communications, 9, 4196(2018).

    [89] Faraji-Dana M, Arbabi E, Kwon H et al. Hyperspectral imager with folded metasurface optics[J]. ACS Photonics, 6, 2161-2167(2019).

    [90] Li Z Y, Palacios E, Butun S et al. Ultrawide angle, directional spectrum splitting with visible-frequency versatile metasurfaces[J]. Advanced Optical Materials, 4, 953-958(2016).

    [91] Guo Z Y, Zhu L, Shen F et al. Dielectric metasurface based high-efficiency polarization splitters[J]. RSC Advances, 7, 9872-9879(2017).

    [92] Zhang D, Ren M X, Wu W et al. Nanoscale beam splitters based on gradient metasurfaces[J]. Optics Letters, 43, 267-270(2018).

    [93] Ilic O, Atwater H A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects[J]. Nature Photonics, 13, 289-295(2019).

    [94] Andrén D, Baranov D G, Jones S et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nature Nanotechnology, 16, 970-974(2021).

    [95] Xu X, Kwon H, Gawlik B et al. Enhanced photoresponse in metasurface-integrated organic photodetectors[J]. Nano Letters, 18, 3362-3367(2018).

    [96] Kim I, Martins R J, Jang J et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 16, 508-524(2021).

    [97] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).

    [98] Li T, Chen C, Xiao X J et al. Revolutionary meta-imaging: from superlens to metalens[J]. Photonics Insights, 2, R01(2023).

    [99] Arbabi A, Faraon A. Advances in optical metalenses[J]. Nature Photonics, 17, 16-25(2023).

    [100] Chen M K, Wu Y F, Feng L et al. Principles, functions, and applications of optical meta-lens[J]. Advanced Optical Materials, 9, 2001414(2021).

    [101] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [102] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [103] Zhang J, Dun X, Zhu J Y et al. Large numerical aperture metalens with high modulation transfer function[J]. ACS Photonics, 10, 1389-1396(2023).

    [104] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [105] Avayu O, Almeida E, Prior Y et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 8, 14992(2017).

    [106] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [107] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).

    [108] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).

    [109] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [110] Li J, Ye H, Wu T S et al. Ultra-broadband large-angle beam splitter based on a homogeneous metasurface at visible wavelengths[J]. Optics Express, 28, 32226-32238(2020).

    [111] Chu S, Bjorkholm J E, Ashkin A et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters, 57, 314-317(1986).

    [112] Li T Y, Kingsley-Smith J J, Hu Y H et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles[J]. Optics Letters, 48, 255-258(2023).

    [113] Luo X H, Dong S Y, Wang Z S et al. Research progress of metasurface-based VR/AR display technology[J]. Laser & Optoelectronics Progress, 59, 2011002(2022).

    [114] Ren Y H, Li P S, Liu Z J et al. Low-threshold nanolasers based on miniaturized bound states in the continuum[J]. Science Advances, 8, eade8817(2022).

    [115] Chen B, Wei Y M, Zhao T M et al. Bright solid-state sources for single photons with orbital angular momentum[J]. Nature Nanotechnology, 16, 302-307(2021).

    [116] Liu S F, Srinivasan K, Liu J. Nanoscale positioning approaches for integrating single solid-state quantum emitters with photonic nanostructures[J]. Laser & Photonics Reviews, 15, 2100223(2021).

    Chengfeng Li, Tao He, Yuzhi Shi, Zeyong Wei, Zhanshan Wang, Xinbin Cheng. China's Top Ten Advances in Optics: Research Progress on Optical Applications of Anomalous Deflection Metasurfaces (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000001
    Download Citation