• Laser & Optoelectronics Progress
  • Vol. 60, Issue 8, 0811027 (2023)
Yuan Xu, Chunyi Chen*, Xiaojuan Hu, Haiyang Yu, and Ye Tian
Author Affiliations
  • School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    DOI: 10.3788/LOP230893 Cite this Article Set citation alerts
    Yuan Xu, Chunyi Chen, Xiaojuan Hu, Haiyang Yu, Ye Tian. Visual Perception Evaluation Method of Stereo Images Based on CNN-SVR[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811027 Copy Citation Text show less
    References

    [1] Jung C, Cao L H, Liu H M et al. Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping[J]. Displays, 40, 17-23(2015).

    [2] Karimi M, Nejati M, Lin W S. Bi-disparity sparse feature learning for 3D visual discomfort prediction[J]. Signal Processing, 188, 108179(2021).

    [3] Yang J C, Nguyen V, Sim K et al. 3-D visual discomfort assessment considering optical and neural attention models[J]. IEEE Transactions on Broadcasting, 66, 279-291(2020).

    [4] Oh H, Lee S, Bovis A C. Stereoscopic 3D visual discomfort prediction: dynamic accommodation and vergence interaction model[J]. IEEE Transactions on Image Processing, 25, 615-629(2016).

    [5] Hu J J, Li S M, Chang Y L et al. Comfortable disparity range of stereo images based on the salient region[J]. Acta Optica Sinica, 38, 0811001(2018).

    [6] Li Y F, Li C F, Sang Q B. No-reference stereo image quality assessment of cyclopean images optimized using the quaternion wavelet transform[J]. Laser & Optoelectronics Progress, 56, 181006(2019).

    [7] Zhang W L, Luo T, Jiang G Y et al. Using saliency-weighted disparity statistics for objective visual comfort assessment of stereoscopic images[J]. 3D Research, 7, 17(2016).

    [8] Kim H G, Jeong H, Lim H T et al. Binocular fusion net: deep learning visual comfort assessment for stereoscopic 3D[J]. IEEE Transactions on Circuits and Systems for Video Technology, 29, 956-967(2019).

    [9] Harel J, Koch C, Perona P. Graph-based visual saliency[C], 19, 545-552(2006).

    [10] Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles[C], 2432-2439(2010).

    [11] Jung C, Liu H M, Cui Y. Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions[C], 4047-4051(2015).

    [12] Ren H, Su Z B, Lü C H et al. The effect of region contrast on the visual comfort of stereoscopic images[J]. Electronics Letters, 51, 983-985(2015).

    [13] Su Z B, Li D R, Liu B et al. A visual comfort assessment approach of stereoscopic images based on a random forest regressor[C], 1456-1461(2020).

    [14] Chang H W, Chen C X. Image fusion based on the HSV color space model and wavelet transform[J]. Computer Engineering and Design, 28, 5682-5684(2007).

    [15] Liang W Q, Zhou Y, Cui J P et al. The novel three-dimensional image comfort prediction method[P].

    [16] Lee S I, Jung Y J, Sohn H et al. The effect of stimulus width on the perceived visual discomfort in viewing stereoscopic 3-D-TV[J]. IEEE Transactions on Broadcasting, 59, 580-590(2013).

    [17] Kim T, Kang J, Lee S et al. Multimodal interactive continuous scoring of subjective 3D video quality of experience[J]. IEEE Transactions on Multimedia, 16, 387-402(2014).

    [18] Jiang Q P, Shao F, Jiang G Y et al. An objective stereoscopic image visual comfort assessment metric based on visual important regions[J]. Journal of Electronics & Information Technology, 36, 875-881(2014).

    [19] Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 14, 622-635(2009).

    [20] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621(1973).

    [21] Kim D, Sohn K. The visual fatigue prediction for stereoscopic image[J]. IEEE Transactions on Circuits and Systems for Video Technology, 21, 231-236(2011).

    [22] Ma H, Jia C Y, Liu S. Image fusion based on spatial frequency[J]. Computer Engineering and Applications, 41, 215-218(2005).

    [23] Jin K H, McCann M T, Froustey E et al. Deep convolutional neural networks for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 26, 4509-4522(2017).

    [24] Liu T J, Liu K H, Shen K H. Learning- based no-reference metric for assessing the quality of experience of stereoscopic images[J]. Journal of Visual Communication and Image Representation, 61, 272-283(2019).

    [25] He Y, Xiao Z, Li Y F et al. An assembly quality prediction method for automotive instrument clusters using CNN-SVR[J]. China Mechanical Engineering, 33, 825-833(2022).

    [26] Jiang Q P, Shao F, Jiang G Y et al. Three-dimensional visual comfort assessment via preference learning[J]. Journal of Electronic Imaging, 24, 043002(2015).

    [27] Jung Y J, Sohn H, Lee S I et al. Predicting visual discomfort of stereoscopic images using a human attention model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 23, 2077-2082(2013).

    [28] Zhou Y, Chen Z B, Li W P. Hierarchical visual comfort assessment for stereoscopic image retargeting[J]. Signal Processing: Image Communication, 95, 116236(2021).

    [29] Zhou Y, Yu W L, Li Z et al. A stereoscopic visual discomfort prediction using multi-scale DCT features[C], 184-191(2019).

    [30] Jiang Q P, Shao F, Jiang G Y et al. Visual comfort assessment for stereoscopic images based on sparse coding with multi-scale dictionaries[J]. Neurocomputing, 252, 77-86(2017).

    [31] Xu H Y, Jiang G Y, Yu M et al. 3D visual discomfort predictor based on subjective perceived-constraint sparse representation in a 3D display system[J]. Future Generation Computer Systems, 83, 85-94(2018).

    Yuan Xu, Chunyi Chen, Xiaojuan Hu, Haiyang Yu, Ye Tian. Visual Perception Evaluation Method of Stereo Images Based on CNN-SVR[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811027
    Download Citation