• Acta Optica Sinica
  • Vol. 41, Issue 19, 1936001 (2021)
Binghao Yu1, Qiang Hao1、*, and Heping Zeng2
Author Affiliations
  • 1School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.3788/AOS202141.1936001 Cite this Article Set citation alerts
    Binghao Yu, Qiang Hao, Heping Zeng. 55 fs, 510 mW Erbium-Doped Fiber Femtosecond Laser[J]. Acta Optica Sinica, 2021, 41(19): 1936001 Copy Citation Text show less
    References

    [1] Zach A, Mohseni M, Polzer C et al. All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy[J]. Optics Letters, 44, 5218-5221(2019).

    [2] Gambetta A, Galzerano G, Rozhin A G et al. Sub-100 fs two-color pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system[J]. Optics Express, 16, 11727-11734(2008).

    [3] Tokel O, Turnalı A, Makey G et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon[J]. Nature Photonics, 11, 639-645(2017).

    [4] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [5] Wang T Y, Xu C. Three-photon neuronal imaging in deep mouse brain[J]. Optica, 7, 947-960(2020).

    [6] Yang W, Wu D L, Wu R L et al. Femtosecond fiber laser at 780 nm for two-photon autofluorescence imaging[J]. Chinese Optics Letters, 17, 071405(2019).

    [7] He M Y, Li M, Yuan S et al. High-power femtosecond self-similar fiber amplification system[J]. Chinese Journal of Lasers, 47, 0308001(2020).

    [8] Elahi P, Kalaycıoğlu H, Li H H et al. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm[J]. Optics Communications, 403, 381-384(2017).

    [9] Luo H, Zhan L, Zhang L et al. Generation of 22.7-fs 2.8-nJ pulses from an erbium-doped all-fiber laser via single-stage soliton compression[J]. Journal of Lightwave Technology, 35, 3780-3784(2017).

    [10] Ou S M, Liu G Y, Lei H et al. Generation of 47 fs pulses from an Er: fiber amplifier[J]. Chinese Physics Letters, 34, 074207(2017).

    [11] Hekmat M J, Omoomi M, Gholami A et al. All-fiber high-power monolithic femtosecond laser at 1.59 μm with 63-fs pulse width[J]. Applied Physics B, 124, 1-7(2017).

    [12] Yu J, Feng Y, Cai Y J et al. 34-fs, all-fiber all-polarization-maintaining single-mode pulse nonlinear amplifier[J]. Optics Express, 24, 16630-16637(2016).

    [13] Jiang X G, Chen F H, Yin T C et al. Generation of high-power 780 nm femtosecond pulses by an all-polarization-maintaining Er-doped fiber amplification system[J]. Applied Optics, 58, 4492-4496(2019).

    [14] Chen R Z, Chang G Q. Pre-chirp managed divided-pulse amplification using composite birefringent plates for pulse division and recombination: en route toward GW peak power[J]. Optics Express, 29, 6330-6343(2021).

    [15] Guichard F, Hanna M, Zaouter Y et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 619-623(2014).

    [16] Kienel M, Klenke A, Eidam T et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 21, 29031-29042(2013).

    Binghao Yu, Qiang Hao, Heping Zeng. 55 fs, 510 mW Erbium-Doped Fiber Femtosecond Laser[J]. Acta Optica Sinica, 2021, 41(19): 1936001
    Download Citation