• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 394 (2014)
Ya-xian FAN1、* and Hui-tian WANG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.002 Cite this Article
    FAN Ya-xian, WANG Hui-tian. All solid-state Raman lasers[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 394 Copy Citation Text show less
    References

    [1] Smekal A. Zur quantentheorie der dispersion [J]. Naturwissenschaften, 1923, 11(43): 873-875.

    [2] Raman C V, Krishnan K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-502.

    [3] Landsberg G S, Mandelshtam L I. Eine neue erscheinungen bei der Lichtzerstreuung in Kristallen [J]. Naturwiss, 1928, 16: 557-558.

    [4] Woodbury E J, Ng W K. Ruby laser operation in the near IR [J]. Proc. IRE, 1962, 50(11): 2367.

    [5] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Opt. Expr., 2011, 19(11): 10857.

    [6] Li Z H, Peng J Y, Zheng Y. CW mode-locked self-Raman 1.17 μm Nd:GdVO4 laser with a novel long cavity [J]. Optics and Laser Technology, 2014, 58: 39-42.

    [7] Zhao J, Zhang X, Guo X, et al. Diode-pumped actively Q-switched Tm, Ho: GdVO4 /BaWO4 intracavity Raman laser at 2533 nm [J]. Opt. Lett., 2013, 38(8): 1206-1208.

    [8] Gao Z L, Liu S D, Zhang J J, et al. A high efficiency third order Stokes Raman laser operating at 1500 nm based on a BaTeMo2 O9 crystal [J]. Laser Physics Letters, 2013, 10(12): 125403.

    [9] Grabtchikov A S, Lisinetskii V A, Orlovich V A, et al. Multimode pumped continuous-wave solid-state Raman laser [J]. Opt. Lett., 2004, 29(21): 2524-2526.

    [10] Burakevich V N, Lisinetskii V A, Grabtchikov A S, et al. Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion [J]. Appl. Phys. B, 2007, 8(3): 511-514.

    [11] Lee A J, Pask H M, Omatsu T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action [J]. Appl. Phys. B, 2007, 88(4): 539-542.

    [12] Dekker P, Pask H M, Spence D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm [J]. Opt. Expr., 2007, 15(11): 7038-7046.

    [13] Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3 + :KGd(WO4)2 laser [J]. Opt. Lett., 2005, 30(13): 1701-1703.

    [14] Lisinetskii V A, Grabtchikov A S, Demidovich A A, et al. Nd:KGW/KGW crystal: Efficient medium for continuous-wave intracavity Raman generation [J]. Appl. Phys. B, 2007, 88(4): 499-501.

    [15] Chang Y T, Huang Y P, Su K W, et al. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2 →4I11/2 and 4F3/2 →4I13/2 transitions [J]. Opt. Expr., 2008, 1(25): 21155.

    [16] Chang Y T, Su K W, Chang H L, et al. Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd: YVO4 crystal as a self-Raman medium [J]. Opt. Expr., 2009, 17: 4330-4335.

    [17] Fan L, Fan Y X, Wang H T. A compact efficient continuous-wave self- frequency Raman laser with a composite YVO4 /Nd:YVO4 /YVO4 crystal [J]. Appl. Phys. B, 2010, 101(3): 493-496.

    [18] Du C, Guo Y, Yu Y, et al. Diode-end-pumped Q-switched composite YVO4 /Nd: YVO4 /YVO4 crystal self-Raman second-Stokes laser [J]. Laser Phys. Lett., 2013, 10(5): 055802.

    [19] Orlovich V A, Burakevich V N, Grabtchikov A S, et al. Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd: YVO4 laser [J]. Laser Phys. Lett., 2006, 3(2): 71.

    [20] Pask H M. Continuous-wave, all-solid-state, intracavity Raman laser [J]. Opt. Lett., 2005, 30(18): 2454-2456.

    [21] Dekker P, Pask H M, Piper J A. All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser [J]. Opt. Lett., 2007, 32(9): 1114-1116.

    [22] Fan L, Fan Y X, Duan Y H, et al. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser [J]. Appl. Phys. B, 2009, 94(4): 553-555.

    [23] Zverev P G, Basiev T T, Sobol A A, et al. Stimulated Raman scattering in alkaline-earth tungstate crystals [J]. Quantum Electronics, 2000, 30(1): 55.

    [24] Piper J A, Pask H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

    [25] Ge W W, Zhang H J, Wang J Y, et al. Thermal and mechanical properties of BaWO4 crystal [J]. Journal of Applied Physics, 2005, 98(1): 013542.

    [26] Zhang G, Jia R, Wu Q. Preparation structural and optical properties of AWO4 (A=Ca,Ba,Sr) nanofilms [J]. Materials Science and Engineering B, 2006, 128(1): 254-259.

    [27] Fan L, Fan Y X, et al. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal [J]. Opt. Lett., 2009, 34(11): 1687-1689.

    [28] Murray J T, Powell R C, Peyghambarian N, et al. Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba (NO3)2 nonlinear crystals [J]. Opt. Lett., 1995, 20(9): 1017-1019.

    [29] Monarski T W, Hannon S M, Gatt P. Eye-safe coherent lidar detection using a 1.5 μm Raman laser [C]. International Society for Optics and Photonics, 2001: 229-236.

    [30] Kaminskii A A, Ueda K I, Eichler H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient chi (3)- materials for Raman lasers [J]. Opt. Comm., 2001, 194(1): 201-206.

    [31] Chen Y F. Efficient 1521 nm Nd: GdVO4 Raman laser [J]. Opt. Lett., 2004, 29(22): 2632-2634.

    [32] Chen Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal [J]. Opt. Lett., 2004, 29(18): 2172-2174.

    [33] Basiev T T, Sobol A A, Voronko Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers [J]. Opt. Mater., 2000, 15(3): 205.

    [34] Fan J D, Zhang H J, Wang J Y, et al. Growth and thermal properties of SrWO4 single crystal [J]. J. of Appl. Phys., 2006, 100(6): 063513.

    [35] Ivleva L I, Basiev T T, Voronina I S, et al. SrWO4 :Nd3 +-new material for multifunctional lasers [J]. Opt. Mater., 2003, 23(1): 439-442.

    [36] Lan R, Ding S, et al. A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation [J]. Laser Phys. Lett., 2013, 10(2): 025801.

    [37] Jelinkova H, ulc J, Basiev T T, et al. Stimulated Raman scattering in Nd:SrWO4 [J]. Laser Physics Letters, 2005, 2: 4-11.

    [38] Chen X, Zhang X, Wang Q, et al. Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser [J]. Opt. Lett., 2008, 33: 705-707.

    [39] Jia G, Tu C, Brenier A, et al. Thermal and optical properties of Nd3 + :SrWO4:A potential candidate for eye-safe 1.517 μm Raman lasers [J]. Appl. Phys. B, 2005, 81: 627-632.

    [40] Fan Y X, Liu Y, Duan Y H, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal [J]. Appl. Phys. B, 2008, 93(2-3): 327-330.

    [41] Hu C R, Slipchenko M N, et al. Stimulated Raman scattering imaging by continuous-wave laser excitation [J]. Opt. Lett., 2013, 38(9): 1479-1481.

    [42] Li R, Bauer R M, Lubeigt W. Continuous-wave Nd:YVO4 self-Raman lasers based on the 379 cm-1 and 893 cm-1 shifts [C]. Advanced Solid State Lasers. Optical Society of America, 2013: ATu3A. 41.

    [43] Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3 + :KGd(WO4)2 laser [J]. Opt. Lett., 2005, 30(13): 1701-1703.

    [44] Takahashi Y, Inui Y, Asano T, et al. Ultralow-threshold continuous-wave Raman silicon laser using a photonic crystal high-Q nanocavity [C] CLEO: Science and Innovations. Optical Society of America, 2013.

    [45] Li B, Yao J Q, Ding X, et al. A novel CW yellow light generated by a diode-end-pumped intra-cavity frequency mixed Nd:YVO4 [J]. Optics and Laser Technology, 2014, 56: 99-101.

    [46] Du C, Guo Y, Yu Y, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559 nm [J]. Optics and Laser Technology, 2013, 47: 43-46.

    [47] Lee A J, Spence D J, Piper J A, et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible [J]. Opt. Expr., 2010, 18(19): 20013.

    [48] Lee A J, Pask H M, Piper J A, et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission [J]. Opt. Expr., 2010, 18(6): 5984-5992.

    [49] Omatsu T, Lee A, Pask H. Compact yellow-orange Raman lasers [C]. Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013: 1.

    [50] Parrotta D C, Kemp A J, Dawson M D, et al. Multi-Watt, Continuous-wave, tunable diamond Raman laser with intracavity frequency doubling to the visible [J]. IEEE Journal of Selected Topics In Quantum Electronics, 2013, 19(4): 1400108.

    FAN Ya-xian, WANG Hui-tian. All solid-state Raman lasers[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 394
    Download Citation