• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 5, 523 (2017)
Menghan WANG*, Zhaoqi ZHANG, and Shengmei ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.05.003 Cite this Article
    WANG Menghan, ZHANG Zhaoqi, ZHAO Shengmei. Performance comparison of different compressed sensing reconstruction algorithms in ghost imaging[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 523 Copy Citation Text show less
    References

    [1] Gatti A, Brambilla E, Ache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Phys. Rev. Lett., 2004, 93(9): 093602.

    [2] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Phys. Rev. Lett., 2005, 94(18): 183602.

    [3] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light[J]. Journal of Modern Optics, 2006, 53(5): 739-760.

    [4] Gatti A, Bondani M, Lugiato L A, et al. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations[J]. Phys. Rev. Lett., 2007, 98(3): 39301.

    [5] Shih Y H. Quantum imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 1016-1030.

    [7] Shi Dongfeng, Fan Chengyu, et al. Adaptive optical ghost imaging through atmospheric turbulence[J]. Opt. Expr., 2012, 20(27): 27992.

    [8] Yu Wenkai, Li Shen, Yao Xuri, et al. Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network[J]. Appl. Opt., 2013, 52(33): 7882-7888.

    [9] Zhao Chengqiang, Gong Wenlin, Chen Mingliang, et al. Ghost imaging lidar via sparsity constraints[J]. Appl. Phys. Lett., 2012, 101(14): 141123.

    [10] Liu Xuefeng, Yao Xuri, et al. Thermal light optical coherence tomography for transmissive objects[J]. Journal of the Optical Society of America A-optics Image Science and Vision, 2012, 29(9): 1922-1926.

    [11] Yu Wenkai, Li Mingfei, Yao Xuri, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Opt. Expr., 2014, 22(6): 7133-7144.

    [12] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Phys. Rev. A, 2009, 79(5): 053840.

    [13] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl. Phys. Lett., 2009, 95(13): 131110.

    [14] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl. Phys. Lett., 2012, 101(14): 141123.

    [20] Lustig M, Donoho D, Pauly J. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.

    [21] Bajwa W, Haupt J, Sayeed A, et al. Compressive wireless sensing[C]. Proceedings of the 5th International Conference on Information Processing in Sensor Networks, New York: Association for Computing Machinery, 2006: 134-142.

    [22] Herman M A, Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.

    [24] Glouber R J. The quantum theory of optical coherence[J]. Phys. Rev., 1963, 130(6): 2529-2539.

    [25] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 34(9-10): 589-592.

    [29] Li Chengbo. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing[D]. Houston: Doctorial Dissertation of Rice University, 2009.

    CLP Journals

    [1] GUO Hui, YE Zhiqiu. Orthogonal optimization of random speckle patterns for computational ghost imaging[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 48

    WANG Menghan, ZHANG Zhaoqi, ZHAO Shengmei. Performance comparison of different compressed sensing reconstruction algorithms in ghost imaging[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 523
    Download Citation