• Chinese Journal of Lasers
  • Vol. 49, Issue 3, 0301002 (2022)
Xiao Yu1、2, Mengjie Lv1、3, Xu Zhang1、2, Aiai Jia1、2, Guochao Wang1、2、4、*, Lingxiao Zhu1、2, Shuhua Yan1、2、**, and Jun Yang1、2
Author Affiliations
  • 1College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha, Hunan 410073, China
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 622150, China
  • 4Rocket Force University of Engineering, Xi’an, Shaanxi 710025, China
  • show less
    DOI: 10.3788/CJL202249.0301002 Cite this Article Set citation alerts
    Xiao Yu, Mengjie Lv, Xu Zhang, Aiai Jia, Guochao Wang, Lingxiao Zhu, Shuhua Yan, Jun Yang. Research on Frequency Locking of 1560 nm Fiber Laser Based on Rubidium Atomic Modulation Transfer Spectroscopy Technology[J]. Chinese Journal of Lasers, 2022, 49(3): 0301002 Copy Citation Text show less
    References

    [1] Philippov V, Codemard C, Jeong Y et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 29, 2590-2592(2004).

    [2] Yang C, Guan X, Zhao Q et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser[J]. Optics Express, 25, 13324-13331(2017).

    [3] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [4] Talvard T, Westergaard P G, DePalatis M V et al. Enhancement of the performance of a fiber-based frequency comb by referencing to an acetylene-stabilized fiber laser[J]. Optics Express, 25, 2259-2269(2017).

    [5] Yoshida M, Yoshida K, Kasai K et al. 1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser[J]. Optics Express, 24, 24287-24296(2016).

    [6] Jia M Y, Zhao G, Zhou Y T et al. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique[J]. Acta Physica Sinica, 67, 104207(2018).

    [7] Takiguchi M, Yoshikawa Y, Yamamoto T et al. Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber[J]. Optics Letters, 36, 1254-1256(2011).

    [8] Stern G, Allard B, Robert-De-saint-vincent M et al. Frequency doubled 1534 nm laser system for potassium laser cooling[J]. Applied Optics, 49, 3092-3095(2010).

    [9] Wang X W, Xiang J F, Peng X K et al. Light source of rubidium cold atomic clock based on fiber laser amplification and frequency doubling[J]. Acta Optica Sinica, 39, 0914002(2019).

    [10] Cordiale P, Galzerano G, Schnatz H J M. International comparison of two iodine-stabilized frequency-doubled Nd∶YAG lasers at λ=532 nm[J]. Metrologia, 37, 177-182(2000).

    [11] Yuan Q P, Wu L N, Tong Z R et al. Line width of feed-forward technology compression semiconductor laser based on single side-band modulation[J]. Infrared and Laser Engineering, 43, 1699-1703(2014).

    [12] Diboune C, Zahzam N, Bidel Y et al. Multi-line fiber laser system for cesium and rubidium atom interferometry[J]. Optics Express, 25, 16898-16906(2017).

    [13] Wu S Q, Li T C. Technical development of absolute gravimeter: Laser interferometry and atom interferometry[J]. Acta Optica Sinica, 41, 0102002(2021).

    [14] Tian Y H, Wang J P, Yang W H et al. Frequency doubling system for integrated quantum squeezed light source based on MgO∶LiNbO3 crystal[J]. Chinese Journal of Lasers, 47, 1108001(2020).

    [15] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).

    [16] Wang Q, Qi X H, Liu S Y et al. Laser frequency stabilization using a dispersive line shape induced by Doppler Effect[J]. Optics Express, 23, 2982-2990(2015).

    [17] Jundt G, Purves G T, Adams C S et al. Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy[J]. The European Physical Journal D-Atomic, Molecular and Optical Physics, 27, 273-276(2003).

    [18] McCarron D J, Hughes I G, Tierney P et al. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium[J]. Review of Scientific Instruments, 78, 093106(2007).

    [19] Millett-Sikking A, Hughes I G, Tierney P et al. DAVLL lineshapes in atomic rubidium[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 40, 187-198(2007).

    [20] Harris M L, Adams C S, Cornish S L et al. Polarization spectroscopy in rubidium and cesium[J]. Physical Review A, 73, 062509(2006).

    [21] Wieman C, Hänsch T W. Doppler-free laser polarization spectroscopy[J]. Physical Review Letters, 36, 1170-1173(1976).

    [22] Silver J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods[J]. Applied Optics, 31, 707-717(1992).

    [23] Bjorklund G C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions[J]. Optics Letters, 5, 15-17(1980).

    [24] Preuschoff T, Schlosser M, Birkl G. Optimization strategies for modulation transfer spectroscopy applied to laser stabilization[J]. Optics Express, 26, 24010-24019(2018).

    [25] Zhang J, Wei D, Xie C D et al. Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum[J]. Optics Express, 11, 1338-1344(2003).

    [26] McCarron D J, King S A, Cornish S L. Modulation transfer spectroscopy in atomic rubidium[J]. Measurement Science and Technology, 19, 105601(2008).

    [27] Noh H R, Park S E, Li L Z et al. Modulation transfer spectroscopy for 87Rb atoms: theory and experiment[J]. Optics Express, 19, 23444-23452(2011).

    [28] Shirley J H. Modulation transfer processes in optical heterodyne saturation spectroscopy[J]. Optics Letters, 7, 537-539(1982).

    [29] Sun D L, Zhou C, Zhou L et al. Modulation transfer spectroscopy in a lithium atomic vapor cell[J]. Optics Express, 24, 10649-10662(2016).

    [30] Luo M, Bi Z Y, Chen Y Q et al. Line center shift of modulation transfer spectroscopy due to the asymmetricity of sidebands[J]. Acta Physica Sinica, 48, 1845-1851(1999).

    [31] Wang G C, Li X H, Yan S H et al. Real-time absolute distance measurement by multi-wavelength interferometry synchronously multi-channel phase-locked to frequency comb and analysis for the potential non-ambiguity range[J]. Acta Physica Sinica, 70, 20201225(2021).

    [32] Luo Y K, Yan S H, Jia A A et al. Revisiting the laser frequency locking method using acousto-optic frequency modulation transfer spectroscopy[J]. Chinese Optics Letters, 14, 121401(2016).

    [33] Qi X H, Chen W L, Yi L et al. Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique[J]. Chinese Physics Letters, 26, 044205(2009).

    [34] Long J B, Yang S J, Chen S et al. Magnetic-enhanced modulation transfer spectroscopy and laser locking for 87Rb repump transition[J]. Optics Express, 26, 27773-27786(2018).

    Xiao Yu, Mengjie Lv, Xu Zhang, Aiai Jia, Guochao Wang, Lingxiao Zhu, Shuhua Yan, Jun Yang. Research on Frequency Locking of 1560 nm Fiber Laser Based on Rubidium Atomic Modulation Transfer Spectroscopy Technology[J]. Chinese Journal of Lasers, 2022, 49(3): 0301002
    Download Citation