• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2215008 (2022)
Xiaole Chen1, Ruifeng Yang1、2、*, and Chenxia Guo1、2
Author Affiliations
  • 1School of Instrument and Electronics, North University of China, Taiyuan 030051, Shanxi, China
  • 2Automated Test Equipment and System Engineering Technology Research Center of Shanxi Province, Taiyuan 030051, Shanxi, China
  • show less
    DOI: 10.3788/LOP202259.2215008 Cite this Article Set citation alerts
    Xiaole Chen, Ruifeng Yang, Chenxia Guo. Defect Detection of Optical Fiber Coil Based on Improved Low-Rank Representation Model[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2215008 Copy Citation Text show less
    References

    [1] Barrett B, Geiger R, Dutta I et al. The Sagnac effect: 20 years of development in matter-wave interferometry[J]. Comptes Rendus Physique, 15, 875-883(2014).

    [2] Jia M, Yang G L. Research of optical fiber coil winding model based on large-deformation theory of elasticity and its application[J]. Chinese Journal of Aeronautics, 24, 640-647(2011).

    [3] Shen C, Chen X Y. Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature[J]. Applied Optics, 51, 2541-2547(2012).

    [4] Ding Z Y. Study of complete quality measurement for FOG fiber coils[D](2010).

    [5] Webber M, Willig R, Rackowski H et al. Modeling of rate error in interferometric fiber-optic gyroscopes due to stress induced by moisture diffusion[J]. Journal of Lightwave Technology, 30, 2356-2362(2012).

    [6] Ge S C, Yang R F, Guo C X. Constant small tension control for fiber optic coil variable-velocity winding[J]. IEEE Access, 7, 172012-172020(2019).

    [7] Duong V T, Doan P T, Min J H et al. Active real-time tension control for coil winding machine of BLDC motors[C], 765-770(2014).

    [8] Ren S L, Lai Y N, Wang Y Z et al. Fiber winding precision tension fuzzy control system[J]. Advanced Materials Research, 129/130/131, 370-375(2010).

    [9] Lu J S, Chen H R, Cheng M Y et al. Tension control improvement in automatic stator in-slot winding machines using iterative learning control[C], 1643-1647(2014).

    [10] Ming W Y, Shen F, Li X K et al. A comprehensive review of defect detection in 3C glass components[J]. Measurement, 158, 107722(2020).

    [11] Huang Y Q, Jing J F, Wang Z. Fabric defect segmentation method based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5005715(2021).

    [12] Saufi S R, Ahmad Z A B, Leong M S et al. Gearbox fault diagnosis using a deep learning model with limited data sample[J]. IEEE Transactions on Industrial Informatics, 16, 6263-6271(2020).

    [13] Zhang W C, Ye Z Q. A design of visual identify cation technology for accurate winding of optical fiber[J]. Electronics Process Technology, 36, 172-174, 178(2015).

    [14] Guo C X, Yang R F. The improved defects detection method of optical fiber winding[J]. Optik, 125, 675-678(2014).

    [15] Ding Q. Research on detection system of optical fiber winding defects based on machine vision[D](2017).

    [16] Yang Z. Research for fiber optic ring winding monitoring technology based on machine vision[D](2019).

    [17] Pan W H, Chen B L, Zhang J G et al. Compressed sensing STORM super-resolution image reconstruction based on noise correction-principal component analysis preprocessing algorithm[J]. Chinese Journal of Lasers, 47, 0207024(2020).

    [18] Zhang J C, Chen J L, Luo H B et al. Polarization image interpolation algorithm via tensor non-negative sparse factorization[J]. Acta Optica Sinica, 41, 1411001(2021).

    [19] Wang J Y, Xu J X, Li Q W. X-ray image reconstruction based on hierarchical model and low-rank approximation[J]. Laser & Optoelectronics Progress, 58, 0610004(2021).

    [20] Zhang T Z, Liu S, Xu C S et al. Structural sparse tracking[C], 150-158(2015).

    [21] Xie J, Hou G J, Wang G D et al. Blind restoration for underwater image based on sparse prior of red channel[J]. Laser & Optoelectronics Progress, 58, 1610014(2021).

    [22] Zha Z Y, Yuan X, Wen B H et al. From rank estimation to rank approximation: rank residual constraint for image restoration[J]. IEEE Transactions on Image Processing, 29, 3254-3269(2019).

    [23] Liu W, Ge H W. Fast face recognition method based on sparse representation[J]. Laser & Optoelectronics Progress, 57, 181024(2020).

    [24] Ahmed J, Gao B, Woo W L. Sparse low-rank tensor decomposition for metal defect detection using thermographic imaging diagnostics[J]. IEEE Transactions on Industrial Informatics, 17, 1810-1820(2021).

    [25] Candès E J, Li X D, Ma Y et al. Robust principal component analysis[J]. Journal of the ACM, 58, 1-37(2011).

    [26] Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low-rank representation[C], 663-670(2010).

    [27] Candes E J, Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 98, 925-936(2010).

    [28] Liu G C, Lin Z C, Yan S C et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 171-184(2013).

    [29] Zhang X D[M]. Matrix analysis and applications(2013).

    [30] Lei Y W, Zhou D X. Analysis of singular value thresholding algorithm for matrix completion[J]. Journal of Fourier Analysis and Applications, 25, 2957-2972(2019).

    [31] Yang J F, Yin W T, Zhang Y et al. A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM Journal on Imaging Sciences, 2, 569-592(2009).

    Xiaole Chen, Ruifeng Yang, Chenxia Guo. Defect Detection of Optical Fiber Coil Based on Improved Low-Rank Representation Model[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2215008
    Download Citation