• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201066 (2020)
Mengmeng Chai1, Lijun Qiao2, Mingjiang Zhang1, Xiaojing Wei1, Qiang Yang2, and Hongchun Xu3
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 3Accelink Technology Co. Ltd., Wuhan 430205, China
  • show less
    DOI: 10.3788/IRLA20201066 Cite this Article
    Mengmeng Chai, Lijun Qiao, Mingjiang Zhang, Xiaojing Wei, Qiang Yang, Hongchun Xu. Progress in photonic integrated chaotic semiconductor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201066 Copy Citation Text show less
    References

    [1] T H Maiman. Stimulated optical emission in fluorescent solids. I. Theoretical considerations. Physical Review, 123, 1145-1150(1961).

    [2] P A Franken, A E Hill, C W Peters. Generation of optical harmonics. Physical Review Letters, 7, 118-119(1961).

    [3] H Haken. Analogy between higher instabilities in fluids and lasers. Physics Letters A, 53, 77-78(1975).

    [4] Y P Xu, M J Zhang, L Zhang. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced distributed feedback. Optics Letters, 42, 4107-4110(2017).

    [5] D M Wang, L S Wang, Y Y Guo. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser. Optics Express, 27, 3065-3073(2019).

    [6] N Jiang, C Wang, C P Xue. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens. Optics Express, 25, 14359-14367(2017).

    [7] Q C Zhao, H X Yin. Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers. Optics and Laser Technology, 47, 208-213(2013).

    [8] N Oliver, M C Soriano, D W Sukow. Fast random bit generation using a chaotic laser: approaching the information theoretic limit. IEEE Journal of Quantum Electronics, 49, 910-918(2013).

    [9] F Y Lin, J M Liu. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics, 10, 991-997(2004).

    [10] Y H Wang, M J Zhang, J Z Zhang. Millimeter-Level-Spatial-Resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [11] P J Urban, A Getaneh, der Weid J P von. Detection of fiber faults in passive optical networks. Journal of Optical Communications and Networking, 5, 1111-1121(2013).

    [12] M J Zhang, T G Liu, A B Wang. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 36, 1008-1010(2011).

    [13] A Argyris, M Hamacher, K E Chlouverakis. Photonic integrated device for chaos applications in communications. Physical Review Letters, 100, 194101(2008).

    [14] T Sasaki, I Kakesu, Y Mitsui. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution. Optics Express, 25, 26029(2017).

    [15] K E Chlouverakis, A Argyris, A Bogris. Hurst exponents and cyclic scenarios in a photonic integrated circuit. Physical Review E, 78, 066215(2008).

    [16] J P Toomey, D M Kane, C McMahon. Integrated semiconductor laser with optical feedback: transition from short to long cavity regime. Optics Express, 23, 18754-18762(2015).

    [17] J P Toomey, A Argyris, C McMahon. Time-scale independent permutation entropy of a photonic integrated device. Journal of Lightwave Technology, 35, 88-95(2017).

    [18] J G Wu, L J Zhao, Z M Wu. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Optics Express, 21, 23358(2013).

    [19] L Yu, D Lu, B Pan. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. Journal of Lightwave Technology, 32, 3595-3601(2014).

    [20] S Bauer, O Brox, J Kreissl. Nonlinear dynamics of semiconductor lasers with active optical feedback. Physical Review E, 69, 016206(2004).

    [21] B W Pan, D Lu, L J Zhao. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photonics Technology Letters, 27, 2516-2519(2015).

    [22] X M Yin, Z Q Zhong, L J Zhao. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection. Optics Communications, 355, 551-557(2015).

    [23] W Q Zhu, Z M Wu, Z Q Zhong. Dynamics of a monolithically integrated semiconductor laser under optical injection. IEEE Photonics Technology Letters, 27, 2119-2122(2015).

    [24] H F Qi, G C Chen, D Lu. A monolithically integrated laser-photodetector chip for on-chip photonic and microwave signal generation. Photonics, 6(2019).

    [25] T Harayama, S Sunada, K Yoshimura. Fast nondeterministic random-bit generation using on-chip chaos lasers. Physical Review A, 83, 031803(2011).

    [26] X Y Dou, H X Yin, C R Tang. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity. Optik, 125, 3961-3965(2014).

    [27] M J Zhang, Y H Xu, T Zhao. A hybrid integrated short-external-cavity chaotic semiconductor laser. IEEE Photonics Technology Letters, 29, 1911-1914(2017).

    [28] M J Zhang, Y N Niu, T Zhao. Chaos generation by a hybrid integrated chaotic semiconductor laser. Chinese Physics B, 27, 126-134(2017).

    [29] V Z Tronciu, C R Mirasso, P Colet. Chaos generation and synchronization using an integrated source with an air gap. IEEE Journal of Quantum Electronics, 46, 1840-1846(2010).

    [30] V Z Tronciu, C R Mirasso, P Colet. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity. Journal of Physics B-Atomic Molecular and Optical Physics, 41, 155401(2008).

    [31] S Sunada, T Harayama, K Arai. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Optics Express, 19, 5713-5724(2011).

    [32] S Sunada, T Fukushima, S Shinohara. A compact chaotic laser device with a two-dimensional external cavity structure. Applied Physics Letters, 104, 241105(2014).

    [33] X W Ma, Y Z Huang, H Long. Experimental and theoretical analysis of dynamical regimes for optically injected microdisk lasers. Journal of Lightwave Technology, 34, 5263-5269(2016).

    [34] Y X Wang, Z W Jia, Z S Gao. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Optics Express, 28, 18507-18515(2020).

    [35] A A Tager, B B Elenkrig. Stability regimes and high-frequency modulation of laser diodes with short external cavity. IEEE Journal of Quantum Electronics, 29, 2886-2890(1993).

    [36] A A Tager, K Petermann. High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE Journal of Quantum Electronics, 30, 1553-1561(1994).

    [37] X X Guo, S Y Xiang, Y H Zhang. High speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation. IEEE Journal of Selected Topics in Quantum Electronics, 26, 101109(2020).

    [38] G Verschaffelt, M Khoder, G V D Sande. Random number generator based on an integrated laser with on-chip optical feedback. Chaos, 27, 114310(2017).

    [39] M P Vaughan, I Henning, M J Adams. Mutual optical injection in coupled DBR laser pairs. Optics Express, 17, 2033-2041(2009).

    [40] B R Cemlyn, D Labukhin, I D Henning. Dynamic transitions in a photonic integrated circuit. IEEE Journal of Quantum Electronics, 48, 261-268(2012).

    [41] D Liu, C Z Sun, B Xiong. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation. Optics Express, 21, 2444-2451(2013).

    [42] D Liu, C Z Sun, B Xiong. Locked and unlocked behavior of integrated mutually coupled lasers with ultra-short delay. IEEE International Semiconductor Laser Conference, 117-118(2014).

    [43] D Liu, C Z Sun, B Xiong. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay. Optics Express, 22, 5614-5622(2014).

    [44] S Ohara, Bosco A K Dal, K Ugajin. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers. Physical Review E, 96, 032216(2017).

    [45] M M Chai, L J Qiao, M J Zhang. Simulation of monolithically integrated semiconductor laser subject to random feedback and mutual injection. IEEE Journal of Quantum Electronics, 56, 1-8(2020).

    [46] L M Zhang, B W Pan, G C Chen. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Applied Optics, 56, 1253-1256(2017).

    [47] M W Li, X C Zhang, J Z Zhang. Long-range and high-precision fault measurement based on integrated short-external-cavity chaotic semiconductor laser. IEEE Photonics Technology Letters, 31, 1389-1392(2019).

    [48] A Argyris, S Deligiannidis, E Pikasis. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Optics Express, 18, 18763-18768(2010).

    [49] L M Zhang, B W Pan, G C Chen. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports, 7, 45900(2017).

    [50] R Takahashi, Y Akizawa, A Uchida. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation. Optics Express, 22, 11727(2014).

    [51] K Ugajin, Y Terashima, IwakawaK. Real-time fast physical random number generator with a photonic integrated circuit. Optics Express, 25, 6511-6523(2017).

    [52] D Syvridis, A Argyris, A Bogris. Integrated devices for optical chaos generation and communication applications. IEEE Journal of Quantum Electronics, 45, 1421-1428(2009).

    [53] A Argyris, E Grivas, M Hamacher. Chaos-on-a-chip secures data transmission in optical fiber links. Optics Express, 18, 5188-5189(2010).

    [54] A Bogris, A Argyris, D Syvridis. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits. IEEE Journal of Quantum Electronics, 46, 1421-1429(2010).

    [55] S S Li, S C Chan. Chaotic Time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback. IEEE Journal of Selected Topics in Quantum Electronics, 21(2015).

    [56] J Z Zhang, C K Feng, M J Zhang. Suppression of time delay signature based on Brillouin backscattering of chaotic laser. IEEE Photonics Journal, 9, 1502408(2017).

    [57] G R Gray, D Huang, G P Agrawal. Chaotic dynamics of semiconductor lasers with phase-conjugate feedback. Physical Review A, 49, 2096-2105(1994).

    [58] J Sacher, W Elsässer, E O Göbel. Intermittence in the coherence collapse of a semiconductor laser with external feedback. Physical Review Letters, 63, 2224-2227(1989).

    [59] D Y Tang, J Pujol, C O Weiss. Type-III intermittency of a laser. Physical Review A, 44, 35-38(1991).

    [60] D Y Tang, M Y Li, C O Weiss. Laser dynamics of type-I intermittency. Physical Review A, 46, 676-678(1992).

    [61] H P Wang, X Chen, L J Zhao. Experimental observation of intermittent chaos in a three-section monolithically integrated semiconductor laser. Progress in Electromagnetic Research Symposium, 4867-4870(2016).

    [62] A K D Bosco, Y Akizawa, K Kanno. Photonic integrated circuits unveil crisis-induced intermittency. Optics Express, 24, 22198-22209(2016).

    [63] K D B Andreas, N Sato, Y Terashima. Random number generation from intermittent optical chaos. IEEE Journal of Selected Topics in Quantum Electronics, 23(2017).

    Mengmeng Chai, Lijun Qiao, Mingjiang Zhang, Xiaojing Wei, Qiang Yang, Hongchun Xu. Progress in photonic integrated chaotic semiconductor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201066
    Download Citation