• Photonics Research
  • Vol. 1, Issue 4, 154 (2013)
Mehrdad Irannejad*, Mustafa Yavuz, and Bo Cui
Author Affiliations
  • Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
  • show less
    DOI: 10.1364/PRJ.1.000154 Cite this Article Set citation alerts
    Mehrdad Irannejad, Mustafa Yavuz, Bo Cui. Finite difference time domain study of light transmission through multihole nanostructures in metallic film[J]. Photonics Research, 2013, 1(4): 154 Copy Citation Text show less
    References

    [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [2] H. A. Bethe. Theory of diffraction by small holes. Phys. Rev., 66, 163-182(1944).

    [3] C. Guan, Y. Wang, L. Yuan. Multi-hole optical fiber surface plasmon resonance sensor. J. Phys., 276, 012507(2011).

    [4] J. V. Coe, S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. Sudnitsyn, F. Hrovat. Extraordinary IR transmission with metallic arrays of subwavelength holes. Anal. Chem., 78, 1384-1390(2006).

    [5] X. Luo, T. Ishihara. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express, 12, 3055-3065(2004).

    [6] S. H. Garrett, L. H. Smith, W. L. Barnes. Fluorescence in the presence of metallic hole arrays. J. Mod. Opt., 52, 1105-1122(2005).

    [7] S. I. Bozhevolnyi, J. Beermann, V. Coello. Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett., 90, 197403(2003).

    [8] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [9] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [10] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B, 58, 6779-6782(1998).

    [11] F. Gao, J. Zhao, D. Qi, Q. Hu, R. Zhang, R. Peng. Excitation of surface plasmons in subwavelength nanoaperatures with different geometries. J. Nanosci. Nanotechnol., 10, 7324-7327(2010).

    [12] R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res., 41, 1049-1057(2008).

    [13] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers. Light passing through subwavelength apertures. Rev. Mod. Phys., 82, 729-787(2010).

    [14] D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, H. A. Atwater. Universal optical transmission features in periodic and quasiperiodic hole arrays. Optics Express, 16, 9222-9238(2008).

    [15] H. Ahmadreza, K. Mojtaba, T. Vo-Van. Optical behaviour of thick gold and silver films with periodic circular nanohole arrays. J. Phys. D, 45, 485105(2012).

    [16] S.-H. Chang, S. Gray, G. Schatz. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express, 13, 3150-3165(2005).

    [17] R. Wannemacher. Plasmon-supported transmission of light through nanometric holes in metallic thin films. Opt. Commun., 195, 107-118(2001).

    [18] G. C. des Francs, D. Molenda, U. C. Fischer, A. Naber. Enhanced light confinement in a triangular aperture: experimental evidence and numerical calculations. Phys. Rev. B, 72, 165111(2005).

    [19] V. Alexandre, L. Thierry. Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. D, 40, 7152-7158(2007).

    [20] A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic eevices. Appl. Opt., 37, 5271-5283(1998).

    [21] E. Laux, C. Genet, T. W. Ebbesen. Enhanced optical transmission at the cutoff transition. Opt. Express, 17, 6920-6930(2009).

    [22] J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, S. K. Gray. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt. Express, 15, 18119-18129(2007).

    [23] M. Najiminaini, F. Vasefi, B. Kaminska, J. J. L. Carson. Effect of surface plasmon energy matching on the sensing capability of metallic nano-hole arrays. Appl. Phys. Lett., 100, 063110(2012).

    [24] H. Liu, P. Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 452, 728-731(2008).

    [25] J.-Y. Li, Y.-L. Hua, J.-X. Fu, Z.-Y. Li. Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films. J. Appl. Phys., 107, 073101(2010).

    [26] H. Gao, J. Henzie, T. W. Odom. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett., 6, 2104-2108(2006).

    [27] M. Irannejad, B. Cui. Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays. Plasmonics, 8, 1245-1251(2013).

    [28] H. Reather. Surface Plasmons(1998).

    Mehrdad Irannejad, Mustafa Yavuz, Bo Cui. Finite difference time domain study of light transmission through multihole nanostructures in metallic film[J]. Photonics Research, 2013, 1(4): 154
    Download Citation