• Photonics Research
  • Vol. 1, Issue 4, 154 (2013)
Mehrdad Irannejad*, Mustafa Yavuz, and Bo Cui
Author Affiliations
  • Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
  • show less
    DOI: 10.1364/PRJ.1.000154 Cite this Article Set citation alerts
    Mehrdad Irannejad, Mustafa Yavuz, Bo Cui, "Finite difference time domain study of light transmission through multihole nanostructures in metallic film," Photonics Res. 1, 154 (2013) Copy Citation Text show less
    References

    [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [2] H. A. Bethe. Theory of diffraction by small holes. Phys. Rev., 66, 163-182(1944).

    [3] C. Guan, Y. Wang, L. Yuan. Multi-hole optical fiber surface plasmon resonance sensor. J. Phys., 276, 012507(2011).

    [4] J. V. Coe, S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. Sudnitsyn, F. Hrovat. Extraordinary IR transmission with metallic arrays of subwavelength holes. Anal. Chem., 78, 1384-1390(2006).

    [5] X. Luo, T. Ishihara. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express, 12, 3055-3065(2004).

    [6] S. H. Garrett, L. H. Smith, W. L. Barnes. Fluorescence in the presence of metallic hole arrays. J. Mod. Opt., 52, 1105-1122(2005).

    [7] S. I. Bozhevolnyi, J. Beermann, V. Coello. Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett., 90, 197403(2003).

    [8] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [9] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [10] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B, 58, 6779-6782(1998).

    [11] F. Gao, J. Zhao, D. Qi, Q. Hu, R. Zhang, R. Peng. Excitation of surface plasmons in subwavelength nanoaperatures with different geometries. J. Nanosci. Nanotechnol., 10, 7324-7327(2010).

    [12] R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res., 41, 1049-1057(2008).

    [13] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers. Light passing through subwavelength apertures. Rev. Mod. Phys., 82, 729-787(2010).

    [14] D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, H. A. Atwater. Universal optical transmission features in periodic and quasiperiodic hole arrays. Optics Express, 16, 9222-9238(2008).

    [15] H. Ahmadreza, K. Mojtaba, T. Vo-Van. Optical behaviour of thick gold and silver films with periodic circular nanohole arrays. J. Phys. D, 45, 485105(2012).

    [16] S.-H. Chang, S. Gray, G. Schatz. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express, 13, 3150-3165(2005).

    [17] R. Wannemacher. Plasmon-supported transmission of light through nanometric holes in metallic thin films. Opt. Commun., 195, 107-118(2001).

    [18] G. C. des Francs, D. Molenda, U. C. Fischer, A. Naber. Enhanced light confinement in a triangular aperture: experimental evidence and numerical calculations. Phys. Rev. B, 72, 165111(2005).

    [19] V. Alexandre, L. Thierry. Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. D, 40, 7152-7158(2007).

    [20] A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic eevices. Appl. Opt., 37, 5271-5283(1998).

    [21] E. Laux, C. Genet, T. W. Ebbesen. Enhanced optical transmission at the cutoff transition. Opt. Express, 17, 6920-6930(2009).

    [22] J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, S. K. Gray. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt. Express, 15, 18119-18129(2007).

    [23] M. Najiminaini, F. Vasefi, B. Kaminska, J. J. L. Carson. Effect of surface plasmon energy matching on the sensing capability of metallic nano-hole arrays. Appl. Phys. Lett., 100, 063110(2012).

    [24] H. Liu, P. Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 452, 728-731(2008).

    [25] J.-Y. Li, Y.-L. Hua, J.-X. Fu, Z.-Y. Li. Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films. J. Appl. Phys., 107, 073101(2010).

    [26] H. Gao, J. Henzie, T. W. Odom. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett., 6, 2104-2108(2006).

    [27] M. Irannejad, B. Cui. Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays. Plasmonics, 8, 1245-1251(2013).

    [28] H. Reather. Surface Plasmons(1998).

    Mehrdad Irannejad, Mustafa Yavuz, Bo Cui, "Finite difference time domain study of light transmission through multihole nanostructures in metallic film," Photonics Res. 1, 154 (2013)
    Download Citation