• Acta Optica Sinica
  • Vol. 43, Issue 18, 1899910 (2023)
Chao Fang, Shunda Qiao, Ying He, Zuochun Shen, and Yufei Ma*
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • show less
    DOI: 10.3788/AOS231163 Cite this Article Set citation alerts
    Chao Fang, Shunda Qiao, Ying He, Zuochun Shen, Yufei Ma. Design and Sensing Performance of T-Shaped Quartz Tuning Forks[J]. Acta Optica Sinica, 2023, 43(18): 1899910 Copy Citation Text show less
    References

    [1] Kocache R. The measurement of oxygen on gas mixtures[J]. Journal of Physics E, 19, 401-412(1986).

    [2] Khalil M A K, Rasmussen R A. Carbon monoxide in the earth′s atmosphere: increasing trend[J]. Science, 224, 54-56(1984).

    [3] Zhang Z D, Peng T, Nie X Y et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale[J]. Light: Science & Applications, 11, 274(2022).

    [4] Ma Y F, He Y, Tong Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 26, 32103-32110(2018).

    [5] Yan M, Luo P L, Iwakuni K et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators[J]. Light: Science & Applications, 6, e17076(2017).

    [6] Hashimoto K, Nakamura T, Kageyama T et al. Upconversion time-stretch infrared spectroscopy[J]. Light: Science & Applications, 12, 48(2023).

    [7] Liu Y H, Ma Y F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology[J]. Chinese Optics Letters, 21, 033001(2023).

    [8] Mao Y H, Zhao D, Yan S et al. A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy[J]. Light: Science & Applications, 10, 22(2021).

    [9] Ma Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Physica Sinica, 70, 160702(2021).

    [10] Wang Y F, Du H Y, Li Y Q et al. Testing universality of Feynman-Tan relation in interacting Bose gases using high-order Bragg spectra[J]. Light: Science & Applications, 12, 50(2023).

    [11] Zhang C, Qiao S D, He Y et al. Differential quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 122, 241103(2023).

    [12] Lin H N, Cheng J X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science[J]. eLight, 3, 1-19(2023).

    [13] Ma Y F, Liang T T, Qiao S D et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy[J]. Ultrafast Science, 3, 0024(2023).

    [14] Yang W, Knorr F, Latka I et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy[J]. Light: Science & Applications, 11, 90(2022).

    [15] He Y, Ma Y F, Tong Y et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell[J]. Optics Letters, 44, 1904-1907(2019).

    [16] Le J M, Su Y D, Tian C S et al. A novel scheme for ultrashort terahertz pulse generation over a gapless wide spectral range: Raman-resonance-enhanced four-wave mixing[J]. Light: Science & Applications, 12, 34(2023).

    [17] Qiao S D, Ma P Z, Tsepelin V et al. Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing[J]. Optics Letters, 48, 419-422(2023).

    [18] Chen G Y, Sun Y B, Shi P C et al. Revealing unconventional host-guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy[J]. Light: Science & Applications, 10, 85(2021).

    [19] Zhang C, Qiao S D, Ma Y F. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity[J]. Photoacoustics, 30, 100467(2023).

    [20] Kosterev A A, Bakhirkin Y A, Curl R F et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 27, 1902-1904(2002).

    [21] Li S Z, Dong L, Wu H P et al. Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork[J]. Analytical Chemistry, 91, 5834-5840(2019).

    [22] Lin H Y, Zheng H D, Montano B A Z et al. Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork[J]. Photoacoustics, 25, 100321(2022).

    [23] Ma Y F, Lewicki R, Razeghi M et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Optics Express, 21, 1008-1019(2013).

    [24] Zifarelli A, De Palo R, Patimisco P et al. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser[J]. Photoacoustics, 28, 100401(2022).

    [25] Patimisco P, Sampaolo A, Zheng H D et al. Quartz-enhanced photoacoustic spectrophones exploiting custom tuning forks: a review[J]. Advances in Physics X, 2, 169-187(2017).

    [26] Hu Y Q, Qiao S D, He Y et al. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing[J]. Optics Express, 29, 5121-5127(2021).

    [27] Liu X N, Ma Y F. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell[J]. Chinese Optics Letters, 20, 031201(2022).

    [28] Ma Y F, Tong Y, He Y et al. Research progress of quartz-enhanced photoacoustic spectroscopy[J]. Chinese Journal of Luminescence, 38, 839-848(2017).

    [29] Ma Y F. Recent advances in QEPAS and QEPTS based trace gas sensing: a review[J]. Frontiers in Physics, 8, 268(2020).

    [30] Patimisco P, Sampaolo A, Dong L et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 5, 011106(2018).

    [31] Wu H P, Dong L, Yin X K et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration[J]. Sensors and Actuators B, 297, 126753(2019).

    [32] Qiao S D, He Y, Ma Y F. Trace gas sensing based on single-quartz-enhanced photoacoustic-photothermal dual spectroscopy[J]. Optics Letters, 46, 2449-2452(2021).

    [33] Wu H P, Dong L, Zheng H D et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications, 8, 15331(2017).

    [34] Hu L B, Liu K, Wang G S et al. Research on detecting CO with quartz enhanced photoacoustic spectroscopy based on 2.33 μm distributed feed back laser[J]. Laser & Optoelectronics Progress, 52, 053002(2015).

    [35] Zhang L L, Liu J X, Zhu Z Z et al. Detection of trace sulfur dioxide gas using quartz-enhanced photoacoustic spectroscopy[J]. Laser & Optoelectronics Progress, 56, 213001(2019).

    [36] Zhang M H, Hu L E, Yao D et al. Quartz tuning fork enhanced photoacoustic spectroscopic methane detection system[J]. Acta Optica Sinica, 40, 2430001(2020).

    [37] Spagnolo V, Kosterev A A, Dong L et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Applied Physics B, 100, 125-130(2010).

    [38] Patimisco P, Sampaolo A, Giglio M et al. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy[J]. Optics Express, 27, 1401-1415(2019).

    [39] Sgobba F, Sampaolo A, Patimisco P et al. Compact and portable quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide environmental monitoring in urban areas[J]. Photoacoustics, 25, 100318(2022).

    [40] Patimisco P, Sampaolo A, Dong L et al. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing[J]. Sensors and Actuators B, 227, 539-546(2016).

    [41] Patimisco P, Borri S, Sampaolo A et al. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. Analyst, 139, 2079-2087(2014).

    [42] Hosaka H, Itao K, Kuroda S. Damping characteristics of beam-shaped micro-oscillators[J]. Sensors and Actuators A, 49, 87-95(1995).

    Chao Fang, Shunda Qiao, Ying He, Zuochun Shen, Yufei Ma. Design and Sensing Performance of T-Shaped Quartz Tuning Forks[J]. Acta Optica Sinica, 2023, 43(18): 1899910
    Download Citation