• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201005 (2021)
Ting Fu1、3, Yufei Wang1、2, Xueyou Wang1、3, Jingxuan Chen1、3, Xuyan Zhou1, and Wanhua Zheng1、2、3、4、*
Author Affiliations
  • 1Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/CJL202148.1201005 Cite this Article Set citation alerts
    Ting Fu, Yufei Wang, Xueyou Wang, Jingxuan Chen, Xuyan Zhou, Wanhua Zheng. Microstructure Lasers Based on Parity-Time Symmetry and Supersymmetry[J]. Chinese Journal of Lasers, 2021, 48(12): 1201005 Copy Citation Text show less
    References

    [1] Nakamura M, Yariv A, Yen H W et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4843696

    [2] Usami M, Akiba S, Utaka K. Asymmetric λ/4-shifted InGaAsP/InP DFB lasers[J]. IEEE Journal of Quantum Electronics, 23, 815-821(1987). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073089

    [3] Spießberger S, Schiemangk M, Wicht A et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz[J]. Applied Physics B, 104, 813-818(2011). http://link.springer.com/article/10.1007/s00340-011-4644-7

    [4] Müller A, Fricke J, Brox O et al. Increased diffraction efficiencies of DBR gratings in diode lasers with adiabatic ridge waveguides[J]. Semiconductor Science and Technology, 31, 125011(2016). http://iopscience.iop.org/article/10.1088/0268-1242/31/12/125011

    [5] Guo W, Lu Q, Nawrocka M et al. Integrable slotted single-mode lasers[J]. IEEE Photonics Technology Letters, 24, 634-636(2012). http://d.wanfangdata.com.cn/periodical/05830a9a3f0c3e564bc9e9e76a960c1b

    [6] Wenzel H, Bugge F, Dallmer M et al. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence[J]. IEEE Photonics Technology Letters, 20, 214-216(2008). http://ieeexplore.ieee.org/document/4429345

    [7] Miah M J, Kettler T, Posilovic K et al. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area[J]. Applied Physics Letters, 105, 151105(2014). http://scitation.aip.org/content/aip/journal/apl/105/15/10.1063/1.4898010

    [8] Kapon E, Lindsey C, Katz J et al. Chirped arrays of diode lasers for supermode control[J]. Applied Physics Letters, 45, 200-202(1984). http://scitation.aip.org/content/aip/journal/apl/45/3/10.1063/1.95209

    [9] Lindsey C P, Kapon E, Katz J et al. Single contact tailored gain phased array of semiconductor lasers[J]. Applied Physics Letters, 45, 722-724(1984). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-1984-ThR1

    [10] DeMars S D, Dzurko K M, Lang R J et al. Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980 nm[C]. //Conference on Lasers and Electro-Optics, June 2-7, 1996, Anaheim, California, United States, CTuC2(1996).

    [11] Sarangan A M, Wright M W, Marciante J R et al. Spectral properties of angled-grating high-power semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 35, 1220-1230(1999).

    [12] Liu L, Zhang J X, Wang Y F et al. 500-mW CW single-lobe emission from laterally coupled photonic crystal laser arrays[J]. IEEE Photonics Technology Letters, 24, 1667-1669(2012).

    [13] Liu L, Qu H W, Wang Y F et al. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 39, 3231-3234(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-11-3231

    [14] Sun W, Lu Q Y, Guo W H et al. Analysis of high-order slotted surface gratings by the 2-D finite-difference time-domain method[J]. Journal of Lightwave Technology, 35, 96-102(2017).

    [15] Ma X L, Liu A J, Qu H W et al. High-power tapered photonic crystal lasers with slots for narrow spectral width[J]. IEEE Photonics Technology Letters, 30, 634-637(2018). http://ieeexplore.ieee.org/document/8289364/

    [16] Lu D, Yang Q L, Wang H et al. Review of semiconductor distributed feedback lasers in the optical communication band[J]. Chinese Journal of Lasers, 47, 0701001(2020).

    [17] El-Ganainy R, Makris K G, Christodoulides D N et al. Theory of coupled optical PT-symmetric structures[J]. Optics Letters, 32, 2632-2634(2007). http://www.ncbi.nlm.nih.gov/pubmed/17767329

    [18] Klaimanv S, Günther U, Moiseyev N. Visualization of branch points in PT-symmetric waveguides[J]. Physical Review Letters, 101, 080402(2008).

    [19] Makris K G, El-Ganainy R, Christodoulides D N et al. Beam dynamics in PT symmetric optical lattices[J]. Physical Review Letters, 100, 103904(2008).

    [20] Guo A, Salamo G J, Duchesne D et al. Observation of PT-symmetry breaking in complex optical potentials[J]. Physical Review Letters, 103, 093902(2009). http://www.ncbi.nlm.nih.gov/pubmed/19792798

    [21] Rüter C E, Makris K G, El-Ganainy R et al. Observation of parity-time symmetry in optics[J]. Nature Physics, 6, 192-195(2010). http://www.nature.com/articles/nphys1515

    [22] Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry[J]. Physical Review Letters, 80, 5243-5246(1998).

    [23] Bender C M, Berry M V, Mandilara A. Generalized PT symmetry and real spectra[J]. Journal of Physics A, 35, L467-L471(2002). http://www.ams.org/mathscinet-getitem?mr=1928842

    [24] Bender C M, Brody D C, Jones H F. Complex extension of quantum mechanics[J]. Physical Review Letters, 89, 270401(2002).

    [25] Bender C M. Making sense of non-Hermitian Hamiltonians[J]. Reports on Progress in Physics, 70, 947-1018(2007).

    [26] Neveu A, Schwarz J H. Factorizable dual model of pions[J]. Nuclear Physics B, 31, 86-112(1971). http://www.sciencedirect.com/science/article/pii/0550321371904482

    [27] Ramond P. Dual theory for free fermions[J]. Physical Review D, 3, 2415-2418(1971). http://www.worldscientific.com/doi/abs/10.1142/9789814542456_0003

    [28] Volkov D V, Akulov V P. Is the neutrino a goldstone particle?[J]. Physics Letters B, 46, 109-110(1973). http://www.sciencedirect.com/science/article/pii/0370269373904905

    [29] Wess J, Zumino B. Supergauge transformations in four dimensions[J]. Nuclear Physics B, 70, 39-50(1974).

    [30] Fayet P, Ferrara S. Supersymmetry[J]. Physics Reports, 32, 249-334(1977).

    [31] Wittenv E. Dynamical breaking of supersymmetry[J]. Nuclear Physics B, 188, 513-554(1981).

    [32] Cooper F, Khare A, Sukhatme U. Supersymmetry and quantum mechanics[J]. Physics Reports, 251, 267-385(1995).

    [33] Zhang Y C, Jiang X M, Xia J et al. Tunable high sensitivity temperature sensor based on transmittance changes of parity-time symmetry structure[J]. Chinese Journal of Lasers, 45, 0710002(2018).

    [34] Dang T T, Wang J F. Control of Gaussian optical waves in Gaussian parity-time symmetric waveguide[J]. Acta Optica Sinica, 40, 0319001(2020).

    [35] Brandstetter M, Liertzer M, Deutsch C et al. Reversing the pump dependence of a laser at an exceptional point[J]. Nature Communications, 5, 4034(2014). http://www.nature.com/articles/ncomms5034

    [36] Peng B, Özdemir S K, Rotter S et al. Loss-induced suppression and revival of lasing[J]. Science, 346, 328-332(2014).

    [37] Gu Z Y, Zhang N, Lyu Q et al. Experimental demonstration of PT-symmetric stripe lasers[J]. Laser & Photonics Reviews, 10, 588-594(2016). http://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201500114

    [38] Wong Z J, Xu Y L, Kim J et al. Lasing and anti-lasing in a single cavity[J]. Nature Photonics, 10, 796-801(2016). http://www.nature.com/articles/nphoton.2016.216

    [39] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 11, 752-762(2017).

    [40] El-Ganainy R, Makris K G, Khajavikhan M et al. Non-Hermitian physics and PT symmetry[J]. Nature Physics, 14, 11-19(2018).

    [41] Zhao H, Feng L. Parity-time symmetric photonics[J]. National Science Review, 5, 183-199(2018).

    [42] Qi B K, Chen H Z, Ge L et al. Parity-time symmetry synthetic lasers: physics and devices[J]. Advanced Optical Materials, 7, 1900694(2019). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201900694

    [43] Longhi S. PT-symmetric laser absorber[J]. Physical Review A, 82, 031801(2010).

    [44] Chong Y D, Ge L, Stone A D. Publisher’s note: PT-symmetry breaking and laser-absorber modes in optical scattering systems[J]. Physical Review Letters, 108, 269902(2012).

    [45] Ge L, Chong Y D, Rotter S et al. Unconventional modes in lasers with spatially varying gain and loss[J]. Physical Review A, 84, 023820(2011). http://arxiv.org/abs/1106.3051

    [46] Miri M A. LiKamWa P, Christodoulides D N. Large area single-mode PT-symmetric laser amplifiers[C]. //Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States, QTh3E, 1(2012).

    [47] Longhi S, Feng L. PT-symmetric microring laser-absorber[J]. Optics Letters, 39, 5026-5029(2014).

    [48] Hodaei H, Miri M A, Heinrich M et al. Parity-time-symmetric microring lasers[J]. Science, 346, 975-978(2014). http://www.ncbi.nlm.nih.gov/pubmed/25414308

    [49] Hodaei H, Miri M A, Hassan A U et al. Single mode lasing in transversely multi-moded PT-symmetric microring resonators[J]. Laser & Photonics Reviews, 10, 494-499(2016). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201500292

    [50] Liu W, Li M, Guzzon R S et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser[J]. Nature Communications, 8, 15389(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5437294/

    [51] Yao R Z, Lee C S, Podolskiy V et al. Parity-time symmetry: electrically injected parity time-symmetric single transverse-mode lasers[J]. Laser & Photonics Reviews, 13, 1970010(2019).

    [52] Hayenga W E, Garcia-Gracia H, Cristobal E S et al. Electrically pumped microring parity-time-symmetric lasers[J]. Proceedings of the IEEE, 108, 827-836(2020).

    [53] Chong Y D, Ge L, Cao H et al. Coherent perfect absorbers: time-reversed lasers[J]. Physical Review Letters, 105, 053901(2010).

    [54] Feng L, Wong Z J, Ma R M et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 346, 972-975(2014).

    [55] Miao P, Zhang Z F, Sun J B et al. Orbital angular momentum microlaser[J]. Science, 353, 464-467(2016).

    [56] Zhang Z F, Qiao X D, Midya B et al. Tunable topological charge vortex microlaser[J]. Science, 368, 760-763(2020). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32409473

    [57] Wang X Y, Wang Y F, Zheng W H. Mode control of electrically injected semiconductor laser with parity-time symmetry[J]. Acta Physica Sinica, 69, 024202(2020).

    [58] Liertzer M, Ge L, Cerjan A et al. Pump-induced exceptional points in lasers[J]. Physical Review Letters, 108, 173901(2012). http://europepmc.org/abstract/MED/22680867

    [59] Chen W, Özdemir Ş K, Zhao G et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-196(2017).

    [60] Hodaei H, Hassan A U, Wittek S et al. Enhanced sensitivity at higher-order exceptional points[J]. Nature, 548, 187-191(2017). http://www.nature.com/articles/nature24024

    [61] Kominis Y, Choquette K D, Bountis A et al. Exceptional points in two dissimilar coupled diode lasers[J]. Applied Physics Letters, 113, 081103(2018). http://arxiv.org/abs/1806.01098

    [62] Miri M A, Alù A. Exceptional points in optics and photonics[J]. Science, 363, eaar7709(2019).

    [63] Özdemir Ş K, Rotter S, Nori F et al. Parity-time symmetry and exceptional points in photonics[J]. Nature Materials, 18, 783-798(2019). http://www.ncbi.nlm.nih.gov/pubmed/30962555

    [64] Lin Z, Ramezani H, Eichelkraut T et al. Unidirectional invisibility induced by PT-symmetric periodic structures[J]. Physical Review Letters, 106, 213901(2011). http://www.ncbi.nlm.nih.gov/pubmed/21699297

    [65] Feng L, Xu Y L, Fegadolli W S et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies[J]. Nature Materials, 12, 108-113(2013).

    [66] Gu J, Xi X, Ma J et al. Parity-time-symmetric circular Bragg lasers: a proposal and analysis[J]. Scientific Reports, 6, 37688(2016). http://www.ncbi.nlm.nih.gov/pubmed/27892933

    [67] Zhu Y Y, Zhao Y S, Fan J H et al. Modal gain analysis of parity-time-symmetric distributed feedback lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 5-11(2016). http://ieeexplore.ieee.org/document/7423679

    [68] Longhi S, Feng L. Unidirectional lasing in semiconductor microring lasers at an exceptional point[J]. Photonics Research, 5, B1-B6(2017).

    [69] Miri M A, Heinrich M, Christodoulides D N. Supersymmetry-generated complex optical potentials with real spectra[J]. Physical Review A, 87, 043819(2013). http://arxiv.org/abs/1305.1689

    [70] Miri M A, Heinrich M, El-Ganainy R et al. Supersymmetric optical structures[J]. Physical Review Letters, 110, 233902(2013).

    [71] Heinrich M, Miri M A, Stützer S et al. Supersymmetric mode converters[J]. Nature Communications, 5, 3698(2014).

    [72] Heinrich M, Miri M A, Stützer S et al. Observation of supersymmetric scattering in photonic lattices[J]. Optics Letters, 39, 6130-6133(2014). http://europepmc.org/abstract/MED/25361296

    [73] Miri M A, Heinrich M, Christodoulides D N. SUSY-inspired one-dimensional transformation optics[J]. Optica, 1, 89-95(2014). http://www.opticsinfobase.org/abstract.cfm?URI=optica-1-2-89

    [74] El-Ganainy R, Ge L, Khajavikhan M et al. Supersymmetric laser arrays[J]. Physical Review A, 92, 033818(2015).

    [75] Teimourpour M H, Ge L, Christodoulides D N et al. Non-Hermitian engineering of single mode two dimensional laser arrays[J]. Scientific Reports, 6, 33253(2016).

    [76] Walasik W, Midya B, Feng L et al. Supersymmetry-guided method for mode selection and optimization in coupled systems[J]. Optics Letters, 43, 3758-3761(2018).

    [77] Hokmabadi M P, Nye N S, El-Ganainy R et al. Supersymmetric laser arrays[J]. Science, 363, 623(2019).

    [78] Midya B, Zhao H, Qiao X D et al. Supersymmetric microring laser arrays[J]. Photonics Research, 7, 363-367(2019).

    [79] Hogben L. Handbook of linear algebra[M]. 2nd ed, 1904(2013).

    [80] Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits[M]. 2nd ed, 342-375(2012).

    [81] Fu T, Wang Y F, Wang X Y et al. Mode control of quasi-PT symmetry in laterally multi-mode double ridge semiconductor laser[J]. Chinese Physics Letters, 37, 044207(2020). http://www.researchgate.net/publication/340824864_Mode_Control_of_Quasi-PT_Symmetry_in_Laterally_Multi-Mode_Double_Ridge_Semiconductor_Laser

    [82] Gao Z H, Fryslie S T M, Thompson B J et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays[J]. Optica, 4, 323-329(2017).

    [83] Butler J K, Ackley D E, Botez D. Coupled-mode analysis of phase-locked injection laser arrays[J]. Applied Physics Letters, 44, 293-295(1984). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4852568

    [84] Botez D, Scifres D R. Diode laser arrays[M], 1-67(1994).

    [85] Ren J, Liu Y G N, Parto M et al. Unidirectional light emission in PT-symmetric microring lasers[J]. Optics Express, 26, 27153-27160(2018).

    [86] Hohimer J P, Vawter G A, Craft D C. Unidirectional operation in a semiconductor ring diode laser[J]. Applied Physics Letters, 62, 1185-1187(1993). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4880101

    [87] Hassan A U, Hodaei H, Miri M A et al. Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators[J]. Physical Review A, 92, 063807(2015). http://www.oalib.com/paper/3713363

    [88] Gao Z H, Johnson M T, Choquette K D. Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays[J]. Journal of Applied Physics, 123, 173102(2018). http://arxiv.org/abs/1801.03554v3

    [89] Phang S, Vukovic A, Creagh S C et al. Localized single frequency lasing states in a finite parity-time symmetric resonator chain[J]. Scientific Reports, 6, 20499(2016).

    [90] Parto M, Wittek S, Hodaei H et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018). http://www.ncbi.nlm.nih.gov/pubmed/29601765

    [91] Song W G, Sun W Z, Chen C et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices[J]. Physical Review Letters, 123, 165701(2019).

    [92] Peng R H, Li Y, Huang W P. A single-mode laser based on parity-time-symmetry structured vertical Bragg reflection waveguide[J]. Journal of Lightwave Technology, 36, 4074-4081(2018).

    [93] Peng R H, Li Y, Huang W P. High-power edge-emitting laser based on a parity-time-structured Bragg reflection waveguide[J]. Applied Optics, 58, 2761-2764(2019). http://www.ncbi.nlm.nih.gov/pubmed/31044874

    Ting Fu, Yufei Wang, Xueyou Wang, Jingxuan Chen, Xuyan Zhou, Wanhua Zheng. Microstructure Lasers Based on Parity-Time Symmetry and Supersymmetry[J]. Chinese Journal of Lasers, 2021, 48(12): 1201005
    Download Citation