• Journal of Semiconductors
  • Vol. 42, Issue 6, 060501 (2021)
Xiongfeng Li1,2, Jingui Xu2,3, Zuo Xiao2, Xingzhu Wang1..., Bin Zhang3 and Liming Ding2|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry, Xiangtan University, Xiangtan 411105, China
  • 2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • 3School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
  • show less
    DOI: 10.1088/1674-4926/42/6/060501 Cite this Article
    Xiongfeng Li, Jingui Xu, Zuo Xiao, Xingzhu Wang, Bin Zhang, Liming Ding. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels[J]. Journal of Semiconductors, 2021, 42(6): 060501 Copy Citation Text show less
    References

    [1] Y Lin, J Wang, Z Zhang et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 27, 1170(2015).

    [2] Y Lin, Q He, F Zhao et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J Am Chem Soc, 138, 2973(2016).

    [3] S Holliday, R S Ashraf, A Wadsworth et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun, 7, 11585(2016).

    [4] W Zhao, S Li, H Yao et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 139, 7148(2017).

    [5] Z Xiao, F Liu, X Geng et al. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull, 62, 1331(2017).

    [6] J Yuan, Y Zhang, L Zhou et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140(2019).

    [7] K Jin, Z Xiao, L Ding. D18, an eximious solar polymer!. J Semicond, 42, 010502(2021).

    [8] Y Tong, Z Xiao, X Du et al. Progress of the key materials for organic solar cells. Sci China Chem, 63, 758(2020).

    [9] M Zhang, X Guo, W Ma et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 27, 4655(2015).

    [10] Y Cui, H Yao, J Zhang et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 32, 1908205(2020).

    [11] C Sun, F Pan, H Bin et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 9, 743(2018).

    [12] Y Wu, Y Zheng, H Yang et al. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%. Sci China Chem, 63, 265(2020).

    [13] L Lan, Z Chen, Q Hu et al. High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f] benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv Sci, 3, 1600032(2016).

    [14] B Fan, D Zhang, M Li et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 62, 746(2019).

    [15] T Wang, J Qin, Z Xiao et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 65, 179(2020).

    [16] T Wang, J Qin, Z Xiao et al. Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 77, 105161(2020).

    [17] J Liu, L Liu, C Zuo et al. 5H-dithieno[3,2-b:2',3'-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 64, 1655(2019).

    [18] J Xiong, K Jin, Y Jiang et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 64, 1573(2019).

    [19] Q Liu, Y Jiang, K Jin et al. 18% Efficiency organic solar cells. Sci Bull, 65, 272(2020).

    [20] J Qin, L Zhang, Z Xiao et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 65, 1979(2020).

    [21] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).

    [22] J Lee, D H Sin, J A Clement et al. Medium-bandgap conjugated polymers containing fused dithienobenzochalcogenadiazoles: Chalcogen atom effects on organic photovoltaics. Macromolecules, 49, 9358(2016).

    [23] B P Rand, D P Burk, S R Forrest. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev B, 75, 115327(2007).

    [24] J Xiong, J Xu, Y Jiang et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 65, 1792(2020).

    [25] Z Xiao, X Geng, D He et al. Development of isomer-free fullerene bisadducts for efficient polymer solar cells. Energy Environ Sci, 9, 2114(2016).

    [26] Y Gao, D Li, Z Xiao et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one units. Mater Chem Front, 3, 399(2019).

    [27] L Deng, X Li, S Wang et al. Stereomeric effects of bisPC71BM on polymer solar cell performance. Sci Bull, 61, 132(2016).

    [28] J Wang, Y Gao, Z Xiao et al. A wide-bandgap copolymer donor based on a phenanthridin-6(5H)-one unit. Mater Chem Front, 3, 2686(2019).

    [29] L Zhang, K Jin, Z Xiao et al. Alkoxythiophene and alkylthiothiophene π-bridges enhance the performance of A-D-A electron acceptors. Mater Chem Front, 3, 492(2019).

    [30] K Jin, C Deng, L Zhang et al. A heptacyclic carbon-oxygen-bridged ladder-type building block for A-D-A acceptors. Mater Chem Front, 2, 1716(2018).

    [31] W Li, Q Liu, K Jin et al. Fused-ring phenazine building blocks for efficient copolymer donors. Mater Chem Front, 4, 1454(2020).

    Xiongfeng Li, Jingui Xu, Zuo Xiao, Xingzhu Wang, Bin Zhang, Liming Ding. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels[J]. Journal of Semiconductors, 2021, 42(6): 060501
    Download Citation