[5] Greene P L, Hall D G. Diffraction characteristics of the azimuthal Bessel-Gauss beam [J]. J. Opt. Soc. Am. A, 1996, 13(5): 962-966.
[6] Greene P L, Hall D G. Properties and diffraction of vector Bessel-Gauss beams [J]. J. Opt. Soc. Am. A, 1998, 15(12): 3020-3027.
[7] Sheppard C J R, Matthews H J. Imaging in a high aperture optical systems [J]. J. Opt. Soc. Am. A, 1987, 4(8): 1354-1360.
[8] Biss D P, Brown T G. Cylindrical vector beam focusing through a dielectric interface [J]. Opt. Express, 2001, 9(10): 490-497.
[9] Torok P, Munro P R T. The use of Gauss-Laguerre vector beams in STED microscopy [J]. Opt. Express, 2004, 12(15): 3605-3617.
[10] Biss D P, Brown T G. Primary aberrations in focused radially polarized vortex beams [J]. Opt. Express, 2004, 12(3): 384-393.
[11] Jordan R H, et al. Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution [J]. Opt. Lett., 1994, 19(7): 427-429.
[12] Kant R. An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion [J]. J. Mod. Opt., 1993, 40(11): 2293-2310.
[13] Richards B, Wolf E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system [J]. Proc. Roy. Soc. A, 1959, 253: 358-379.
[14] Zhan Qiwen, Leger J R. Focus shaping using cylindrical vector beam [J]. Opt. Express, 2002, 10(7): 324-331.