• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 52401 (2017)
Qiu Pingping1、*, Qiu Weibin1, Lin Zhili1, Chen Houbo1, Ren Junbo1, Wang Jiaxian1, Kan Qiang2, and Pan Jiaoqing2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.052401 Cite this Article Set citation alerts
    Qiu Pingping, Qiu Weibin, Lin Zhili, Chen Houbo, Ren Junbo, Wang Jiaxian, Kan Qiang, Pan Jiaoqing. Energy-Band Structure and Density of States of Composite Lattice Two-Dimensional Graphene Plasmon Polariton Crystals[J]. Laser & Optoelectronics Progress, 2017, 54(5): 52401 Copy Citation Text show less
    References

    [1] Yablonovich E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059.

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486.

    [3] Finger M A, Iskhakov T S, Joly N Y, et al. Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum[J]. Phys Rev Lett, 2015, 115(14): 143602.

    [4] Liu Jianfei, Liu Fan, Zeng Xiangye, et al. Sensing characteristics of photonic crystal fiber filled with magnetic fluid[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070601.

    [5] Goban A, Hung C L, Hood J D, et al. Superradiance for atoms trapped along a photonic crystal waveguide[J]. Phys Rev Lett, 2015, 115(6): 063601.

    [6] Su Kang, Wang Ziming, Liu Jianjun.Three waveguides directional coupler based on 2D square lattice photonic crystal[J]. Acta Optica Sinica, 2016, 36(3): 0323002.

    [7] Majumdar A, Kim J, Vuckovic J, et al. Electrical control of silicon photonic crystal cavity by graphene[J]. Nano Lett, 2013, 13(2): 515-518.

    [8] Bose R, Sridharan D, Kim H, et al. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity[J]. Phys Rev Lett, 2012, 108(22): 227402.

    [9] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

    [10] Avouris P. Graphene: Electronic and photonic properties and devices[J]. Nano Lett, 2010, 10(11): 4285-4294.

    [11] Qiu W B, Liu X H, Zhao J, et al. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer[J]. Appl Phys Lett, 2014, 104(4): 041109.

    [12] Engel M, Steiner M, Lombardo A, et al. Light-matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3: 906.

    [13] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

    [14] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    [15] Yang Hua, Cao Yang, He Junhui, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070601.

    [16] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85.

    [17] Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.

    [18] Koppens F H L, Chang D E, Javier G D A F. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Lett, 2011, 11(8): 3370-3377.

    [19] Yan H G, Li Z Q, Li X S, et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene[J]. Nano Lett, 2012, 12(7): 3766-3771.

    [20] Yan H G, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

    [21] Deng Xinhua, Yuan Jiren, Liu Jiangtao, et al. Tunable terahertz photonic crystal structures containing graphene[J]. Acta Physica Sinica, 2015, 64(7): 074101.

    [22] Shi B, Cai W, Zhang X Z, et al. Tunable band-stop filters for graphene plasmons based on periodically modulated graphene[J]. Scientific Reports, 2016, 6: 26796.

    [23] Han Changsheng, Yang Yibiao, Wang Yuncai, et al. Bandgap characteristics of two-dimensional Archimedes (4,82) compound lattice photonic crystals with dielectric rods[J]. Acta Photonica Sinica, 2014, 43(6): 616003.

    [24] Zhao J, Qiu W B, Huang Y X, et al. Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks[J]. Opt Lett, 2014, 39(19): 5527-5530.

    [25] Huang Y X, Qiu W B, Lin S X, et al. Investigation of plasmonic whispering gallery modes of graphene equilateral triangle nanocavities[J]. Science China Information Sciences, 2016: 59(4): 042413.

    [26] Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

    [27] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2006, 19(2): 026222.

    [28] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Phys Rev Lett, 2010, 105(25): 256805.

    [29] Zhang T, Chen L, Wang B, et al. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies[J]. Scientific Reports, 2015, 5: 11195.

    [30] Lourioz J M, Benisty H, Berger V, et al. Photonic crystals: Towards nanoscale photonic devices[M]. 2nd ed. Berlin: Springer-Verlag, 2008: 59-77.

    [31] Sukhoivanov I A, Igor V G. Photonic crystals: Physics and practical modeling[M]. Berlin: Springer-Verlag, 2009: 96-103.

    Qiu Pingping, Qiu Weibin, Lin Zhili, Chen Houbo, Ren Junbo, Wang Jiaxian, Kan Qiang, Pan Jiaoqing. Energy-Band Structure and Density of States of Composite Lattice Two-Dimensional Graphene Plasmon Polariton Crystals[J]. Laser & Optoelectronics Progress, 2017, 54(5): 52401
    Download Citation