• Laser & Optoelectronics Progress
  • Vol. 54, Issue 3, 31401 (2017)
Wang Shaomao1、2、3、*, Shang Junjuan1、2、3, Cui Kaifeng1、2、3, Zhang Ping1、2、3, Chao Sijia1、2、3, Yuan Jinbo1、2、3, Cao Jian1、2, Shu Hualin1、2, and Huang Xueren1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.031401 Cite this Article Set citation alerts
    Wang Shaomao, Shang Junjuan, Cui Kaifeng, Zhang Ping, Chao Sijia, Yuan Jinbo, Cao Jian, Shu Hualin, Huang Xueren. Laser Frequency Drift Control Based on Refrigeration Fabry-Pérot Cavity[J]. Laser & Optoelectronics Progress, 2017, 54(3): 31401 Copy Citation Text show less
    References

    [1] Ludlow A D, Boyd M M, Zelevinsky T, et al. Systematic study of the Sr-87 clock transition in an optical lattice[J]. Physical Review Letters, 2006, 96(3): 033003.

    [2] Waldman S J. Status of LIGO at the start of the fifth science run[J]. Classical and Quantum Gravity, 2006, 23(19): S653-S660.

    [3] Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions[J]. Review of Modern Physics, 2003, 75(1): 281-324.

    [4] Bondu F, Fritschel P, Man C N, et al. Ultrahigh-spectral-purity laser for the VIRGO experiment[J]. Optics Letters, 1996, 21(8): 582-584.

    [5] Stoehr H, Mensing F, Helmcke J, et al. Diode laser with 1 Hz linewidth[J]. Optics Letters, 2006, 31(6): 736-738.

    [6] Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15[J]. Optics Letters, 2007, 32(6): 641-643.

    [7] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

    [8] Hfner S, Falke S, Grebing C, et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112-2115.

    [9] Zheng Gongjue, Dai Dapeng, Fang Yinfei, et al. Locking of optical transfer cavity based on PDH technique[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121401.

    [10] Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3): 031804.

    [11] Notcutt M, Ma L-S, Ye J, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 2005, 30(14): 1815-1817.

    [12] Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Pérot cavities[J]. Physical Review A, 2006, 74(5): 053801.

    [13] Alnis J, Matveev A, Kolachevsky N, et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J]. Physical Review A, 2008, 77(5): 053809.

    [14] Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. Journal of the Optical Society of America B, 2010, 27(5): 914-919.

    [15] Fan Xialei, Jin Shangzhong, Zhang Shu, et al. Active suppression of residual amplitude modulation in laser frequency stabilization by multi-frequency mixing[J]. Chinese J Lasers, 2016, 43(4): 0402001.

    [16] Berthold J W, Jacobs S F. Ultraprecise thermal expansion measurements of seven low expansion materials[J]. Applied Optics, 1976, 15(10): 2344-2347.

    [17] Xie Donghong, Deng Dapeng, Guo Li, et al. Line-width measurement method of narrow line width laser[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010006.

    Wang Shaomao, Shang Junjuan, Cui Kaifeng, Zhang Ping, Chao Sijia, Yuan Jinbo, Cao Jian, Shu Hualin, Huang Xueren. Laser Frequency Drift Control Based on Refrigeration Fabry-Pérot Cavity[J]. Laser & Optoelectronics Progress, 2017, 54(3): 31401
    Download Citation