• Infrared and Laser Engineering
  • Vol. 47, Issue 7, 717002 (2018)
Lu Weiye1、*, Zhu Xiaorui2、3, Li Yuesheng1, Yao Shunchun2、3、4, Lu Zhimin2、3、4, Qu Yi1, Rao Yuzhou2、3, and Li Zhenghui2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0717002 Cite this Article
    Lu Weiye, Zhu Xiaorui, Li Yuesheng, Yao Shunchun, Lu Zhimin, Qu Yi, Rao Yuzhou, Li Zhenghui. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering, 2018, 47(7): 717002 Copy Citation Text show less
    References

    [1] Ji J P, Ma X M. Tructural decomposition analysis of the increase in China′s greenhouse gas emissions[J]. China Environmental Science, 2011, 31(12): 2076-2082.

    [2] Thoma E D, Shores R C, Isakov V, et al. Characterization of near-road pollutant gradients using path-integrated optical remote sensing[J]. Journal of the Air & Waste Management Association, 2008, 58(7): 879-890.

    [3] Durbin T D, Sauer C G, Pisano J T, et al. Impact of engine lubricant properties on regulated gaseous emissions of 2000-2001 model-year gasoline vehicles[J]. Journal of the Air & Waste Management Association, 2004, 54(3): 258-268.

    [4] Eng R S, Butler J F, Linden K J, et al. Tunable diode laser spectroscopy: an invited review[J]. Optical Engineering, 1980, 19(6): 945-960.

    [5] He Ying, Zhang Yujun, Kan Ruifeng, et al. Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum[J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 10-13. (in Chinese)

    [6] Tu Xinghua, Liu Wenqing, Zhang Yujun, et al. Second-harmonic detection with tunable diode laser absorption spectroscopy of CO and CO2 at 1.58 μm[J]. Spectroscopy and Spectral Analysis, 2006, 26(7): 1190-1194. (in Chinese)

    [7] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers-comparison of experiment and theory [J]. Applied Physics B, 1981, 26(3): 203-210.

    [8] Shao J, Xiang J D. Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth[J]. Applied Optics, 2016, 55(9): 2339-2345.

    [9] Zhang Zhirong, Xia Hua, Dong Fengzhong, et al. Simultaneous and on-line detection of multiple gas concentration with tunable diode laser absorption spectroscopy[J]. Optics and Precision Engineering, 2013, 21(11): 2771-2777. (in Chinese)

    [10] Zhou Xin, Jin Xing. Harmonic wavelet analysis ofTDLAS signals[J]. Infrared and Laser Engineering, 2014, 43(6):1722-1727. (in Chinese)

    [12] Zhu Xiaorui, Lu Weiye, Rao Yuzhou, et al. Selection of base-line method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455-461. (in Chinese)

    [13] Yao Hua, Wan Fei, Xu Ting, et al. Measurement of CO concentration using tunable laser absorption spectroscopy technology under high temperature condition[J]. Thermal Power Generation, 2011, 40(11): 42-45, 51. (in Chinese)

    [14] The HITRAN Database[DB/OL]. [2017-12-28]. http://hitran.org.

    [15] Ding Zhiqun, Bao Jilong, Zhao Hongxia, et al. Acetylene gas concentration on-line monitoring using TDLAS[J]. Infrared and Laser Engineering, 2013, 42(4): 1015-1019. (in Chinese)

    Lu Weiye, Zhu Xiaorui, Li Yuesheng, Yao Shunchun, Lu Zhimin, Qu Yi, Rao Yuzhou, Li Zhenghui. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering, 2018, 47(7): 717002
    Download Citation