• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 355 (2021)
Haoxuan WANG1, Qiaomu LIU2, and Yiguang WANG3、*
Author Affiliations
  • 11. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
  • 22. China Gas Turbine Establishment, Chengdu 610500, China
  • 33. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.15541/jim20200366 Cite this Article
    Haoxuan WANG, Qiaomu LIU, Yiguang WANG. Research Progress of High Entropy Transition Metal Carbide Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 355 Copy Citation Text show less
    References

    [1] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Mater., 122, 448-511(2017).

    [2] W YEH J, K CHEN S, J LIN S et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6, 299-303(2004).

    [3] W KUCZA, J DABROWA, G CIESLAK et al. Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J. Alloys Compd., 731, 920-928(2018).

    [4] D UTT, A STUKOWSKI, K ALBE. Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a 11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater., 186, 11-19(2020).

    [5] B GLUDOVATZ, A HOHENWARTER, D CATOOR et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345, 1153-1158(2014).

    [6] M LI Z, G PRADEEP K, Y DENG et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534, 227-230(2016).

    [7] Z ZHANG R, J REECE M. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A, 7, 22148-22162(2019).

    [8] S MURTY B, W YEH J, S RANGANATHAN et al. High-entropy Alloys. United Kingdom: Butterworth-Heinemann, 165-176(2019).

    [9] C OSES, C TOHER, S CURTAROLO. High-entropy ceramics. Nat. Rev. Mater., 5, 295-309(2020).

    [10] S LAL M, R SUNDARA. High entropy oxides-a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications. ACS Appl. Mater. Inter., 11, 30846-30857(2019).

    [11] A SARKAR, L VELASCO, D WANG et al. High entropy oxides for reversible energy storage. Nat. Commun., 9, 3400(2018).

    [12] D BERARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi-R, 10, 328-333(2016).

    [13] M BIESUZ, L SPIRIDIGLIOZZI, G DELLAGLI et al. Synthesis and sintering of (Mg,Co,Ni,Cu,Zn)O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci., 53, 8074-8085(2018).

    [14] F OKEJIRI, H ZHANG Z, X LIU J et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts via ultrasonication-based method. ChemSusChem, 13, 111-115(2020).

    [15] D DEMIRSKYI, H BORODIANSKA, S SUZUKI T et al. High- temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Mater., 164, 12-16(2019).

    [16] F LI, C BAO W, K SUN S et al. Synthesis of single-phase metal oxycarbonitride ceramics. Scripta Mater., 176, 17-22(2020).

    [17] A KUMAR, M GUPTA. An insight into evolution of light weight high entropy alloys: a review. Metals Basel, 6, 199(2016).

    [18] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nat. Commun., 6, 8485(2015).

    [19] F WEI X, Y QIN, X LIU J et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J. Eur. Ceram. Soc., 40, 935-941(2020).

    [20] F LI, Y LU, G WANG X et al. Liquid precursor-derived high- entropy carbide nanopowders. Ceram. Int., 45, 22437-22441(2019).

    [21] F WEI X, X LIU J, F LI et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc., 39, 2989-2994(2019).

    [22] J DUSZA, P SVEC, V GIRMAN et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J. Eur. Ceram. Soc., 38, 4303-4307(2018).

    [23] Y ZHOU J, Y ZHANG J, F ZHANG et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int., 44, 22014-22018(2018).

    [24] C JIANG S, T HU, J GILD et al. A new class of high-entropy perovskite oxides. Scripta Mater., 142, 116-120(2018).

    [25] F ZHAO Z, H CHEN, M XIANG H et al. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: a defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. J. Mater. Sci. Technol., 39, 167-172(2020).

    [26] J DABROWA, M STYGAR, A MIKULA et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett., 216, 32-36(2018).

    [27] F ZHAO Z, H CHEN, M XIANG H et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: a high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. J. Mater. Sci. Technol., 38, 80-85(2020).

    [28] J GILD, K KAUFMANN, K Vecchio et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scripta. Mater., 170, 106-110(2019).

    [29] L YAN J, S LIU F, H MA G et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Mater., 157, 129-134(2018).

    [30] J GILD, L BRAUN J, K KAUFMANN et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Mater., 5, 337-343(2019).

    [31] P SARKER, T HARRINGTON, C TOHER et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun., 9, 4980(2018).

    [32] A SARKAR, L VELASCO, D WANG et al. High entropy oxides for reversible energy storage. Nat. Commun., 9, 3400(2018).

    [33] X WANG H, J CAO Y, W LIU et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature. Ceram. Int., 46, 11160-11168(2020).

    [34] Q TAN Y, C CHEN, G Li S et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor. J. Alloys Compd., 816, 152523(2020).

    [35] K REN, K WANG Q, G SHAO et al. Multicomponent high- entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater., 178, 382-386(2020).

    [36] Y DONG, K REN, H LU Y et al. High-entropy environmental barrier coating for the ceramic matrix composites. J. Eur. Ceram. Soc., 39, 2574-2579(2018).

    [37] Z TENG, N ZHU L, Q TAN Y et al. Synjournal and structures of high-entropy pyrochlore oxides. J. Eur. Ceram. Soc., 40, 1639-1643(2020).

    [38] F ZHAO Z, M XIANG H, Z DAI F et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol., 35, 2647-2651(2019).

    [39] R SAVINO, M D S FUMO, D PATERNA et al. Aerothermodynamic study of UHTC-based thermal protection systems. Aerosp. Sci. Technol., 9, 151-160(2005).

    [40] M OPRKA M, G TALMY I, A ZAYKOSKI J. Oxidation-based materials selection for 2000 ℃ + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci., 39, 5887-5904(2004).

    [41] Y KUBOTA, M YANO, R INOUE et al. Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment. J. Eur. Ceram. Soc., 38, 1095-1102(2017).

    [42] A RAMA RAO G, V VENUGOPAL. Kinetics and mechanism of the oxidation of ZrC. J. Alloys Compd., 206, 237-242(1994).

    [43] F VOITOVICH R, A PUGACH E. High-temperature oxidation of ZrC and HfC. Powder Metall. Met. C, 12, 916-921(1973).

    [44] Y CHEN L, L GU Y, L SHI et al. Synjournal and oxidation of nanocrystalline HfB2. J. Alloys Compd., 368, 353-356(2004).

    [45] S SHIMADA. Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics, 141, 99-104(2001).

    [46] A PARTHASARATHY T, A RAPP R, M OPEKA M et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater., 55, 5999-6010(2007).

    [47] A PARTHASARATHY T, A RAPP R, M OPEKA M et al. Effect of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. J. Am. Ceram. Soc., 92, 1079-1086(2009).

    [48] Y JING, B YUAN H, S LIAN Z. Microstructure and mechanical properties of ZrB2-HfC ceramics influenced by HfC addition. Materials, 11, 2046(2018).

    [49] M MALLIK, K RAY K, R MITRA. Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites. J. Eur. Ceram. Soc., 31, 199-215(2011).

    [50] C TRIPP W, C GRAHAM H. Thermogravimetric study of oxidation of ZrB2 in temperature range of 800 ℃ to 1500 ℃. J. Electrochem. Soc., 118, 1195-1199(1971).

    [51] G FAHRENHOLTZ W. The ZrB2 volatility diagram. J. Am. Ceram. Soc., 88, 3509-3512(2005).

    [52] G FAHRENHOLTZ W. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region. J. Am. Ceram. Soc., 90, 143-148(2007).

    [53] P HU, W GUOLIN, Z WANG. Oxidation mechanism and resistance of ZrB2-SiC composites. Corros. Sci., 51, 2724-2732(2009).

    [54] S JACOBSON N, L MYERS D. Active oxidation of. SiC. Oxid. Met., 75, 1-25(2011).

    [55] S JACOBSON N, B HARDER, L MYERS D et al. Oxidation transitions for SiC. Part I. Active-to-passive transitions. J. Am. Ceram. Soc., 96, 838-844(2013).

    [56] G WANG Y, L LUO, J SUN et al. ZrB2-SiC(Al) ceramics with high resistance to oxidation at 1500 ℃. Corros. Sci., 74, 154-158(2013).

    [57] B HE J, G WANG Y, L LUO et al. Oxidation behaviour of ZrB2-SiC (Al/Y) ceramics at 1700 ℃. J. Eur. Ceram. Soc., 36, 3769-3774(2016).

    [58] G WANG Y, S MA B, L LI L et al. Oxidation behavior of ZrB2-SiC-TaC ceramics. J. Am. Ceram. Soc., 95, 374-378(2012).

    [59] W TONG Z, J HE R, B CHENG T et al. High temperature oxidation behavior of ZrB2-SiC added MoSi2 ceramics. Ceram. Int., 44, 21076-21082(2018).

    [60] E ZAPATASOLVAS, D JAYASEELAN D, P BROWN et al. Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics. J. Eur. Ceram. Soc., 34, 3535-3548(2014).

    [61] J GILD, Y ZHANG Y, T HARRINGTON et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep-UK, 6, 37946-37946(2016).

    [62] L YE B, Q WEN T, H HUANG K et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic. J. Am. Ceram. Soc., 102, 4344-4352(2019).

    [63] M HOSKING F. Sodium compatibility of refractory-metal alloy- type 304l stainless-steel joints. Int. J. Refract. Met. H., 64, S181-S190(1985).

    [64] A WERNER E. Introduction to the thermodynamics of materials. Mat. Sci. Eng., 494, 464(2008).

    [65] R CAR, M PARRINELLO. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55, 2471-2474(1985).

    [66] J LIU X, P WANG C, F GAO et al. Thermodynamic calculation of phase equilibria in the Sn-Ag-Cu-Ni-Au System. J. Electron. Mater., 36, 1429-1441(2007).

    [67] P WANG C, J WANG, H GUO S et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Co-Mo-W system. Intermetallics, 17, 642-650(2009).

    [68] R FENG, C GAO M, C LEE et al. Design of light-weight high- entropy alloys. Entropy Switz., 18, 333-353(2016).

    [69] J KIM. Applicability of special quasi-random structure models in thermodynamic calculations using semi-empirical Debye-Grüneisen theory. J. Alloys Compd., 650, 564-571(2015).

    [70] K VOAS B, M USHER T, M LIU X et al. Special quasirandom structures to study the (K0.5Na0.5)NbO3 random alloy. Phys. Rev. B, 90, 024105-1(2014).

    [71] R SAHARA, S EMURA, S LI et al. First-principles study of electronic structures and stability of body-centered cubic Ti-Mo alloys by special quasirandom structures. Sci. Technol. Adv. Mat., 15, 035014-1(2014).

    [72] L VITOS, A ABRIKOSOV I, B JOHANSSON. Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett., 87, 156401-1(2001).

    [73] A ABRIKOSOV I, B JOHANSSON. Applicability of the coherent- potential approximation in the theory of random alloys. Phys. Rev. B, 57, 14164-14173(1998).

    [74] L YE B, Q WEN T, C NGUYEN M et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Mater., 170, 15-23(2019).

    [75] V BRAIC, A VLADESCU, M BALACEANU et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Tech., 211, 117-121(2012).

    [76] Y LIN S, Y CHANG S, C HUANG Y et al. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surf. Coat. Tech., 206, 5096-5102(2012).

    [77] Y ZHOU J, Y ZHANG J, F ZHANG et al. high-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int., 44, 22014-22018(2018).

    [78] L FENG, G FAHRENHOLTZ W, E HILMAS G et al. Synthesis of single-phase high-entropy carbide powders. Scripta Mater., 162, 90-93(2019).

    [79] L YE B, S NING S, D LIU et al. One-step synthesis of coral-like high-entropy metal carbide powders. J.Am. Ceram. Soc., 102, 6372-6378.

    [80] B DU, H LIU H, H CHU Y. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. J. Am. Ceram. Soc., 103, 4063-4068(2020).

    [81] S NING S, Q WEN T, L YE B et al. Low-temperature molten salt synjournal of high-entropy carbide nanopowders. J. Am. Ceram. Soc., 103, 2244-2251(2020).

    [82] S JAGADEESH, D S M VISHNU, H K KIM et al. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed., 59, 11830-11835(2020).

    [83] M BRAIC, V BRAIC, M BALACEANU et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf. Coat. Tech., 204, 2010-2014(2010).

    [84] S JHONG Y, W HUANG C, J LIN S et al. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater. Chem. Phys., 210, 348-352(2017).

    [85] M BRAIC, M BALACEANU, A VLADESCU et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl. Surf. Sci., 284, 671-678(2013).

    [86] V BRAIC, C PARAU A, I PANA et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings. Surf. Coat. Tech., 258, 996-1005(2014).

    [87] T CSANADI, G CASTLE E, J REECE M et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep-UK, 9, 10200(2019).

    [88] C WANG, Y YE, X GUAN et al. An analysis of tribological performance on Cr/GLC film coupling with Si3N4, SiC, WC, Al2O3 and ZrO2 in seawater. Tribol. Int., 96, 77-86(2016).

    [89] J HARRINGTON T, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater., 166, 271-280(2019).

    [90] K WANG, L CHEN, G XU C et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J. Mater. Sci. Technol., 39, 99-105(2020).

    [91] X HAN X, G VLADIMIR, S RICHARD et al. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc., 40, 2709-2715(2020).

    [92] L YAN X, L CONSTANTIN, F LU Y et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc., 101, 4486-4491(2018).

    [93] H CHEN, M XIANG H, Z DAI F et al. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating. J. Mater. Sci. Technol., 35, 2404-2408(2019).

    [94] H CHEN, M XIANG H, Z DAI F et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol., 35, 1700-1705(2019).

    [95] L YE B, Q WEN T, D LIU et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corros. Sci., 153, 327-332(2019).

    [96] L YE B, Q WEN T, H CHU Y. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. J. Am. Ceram. Soc., 103, 500-507(2019).

    [97] X WANG H, X HAN, W LIU et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Er0.2Ti0.2Nb0.2)C at 1400-1600 ℃.

    [98] L BACKMAN, J GILD, J LUO et al. Theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater., 197, 20-27(2020).

    [99] X WANG H, Y WANG S, J CAO Y et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 ℃. J. Mater. Sci. Technol., 60, 147-155(2021).

    [100] V BRAIC, M BALACEANU, M BRAIC et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed., 10, 197-205(2019).

    [101] F WANG, L YAN X, Y WANG T et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater., 195, 739-749(2020).

    Haoxuan WANG, Qiaomu LIU, Yiguang WANG. Research Progress of High Entropy Transition Metal Carbide Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 355
    Download Citation