• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 4, 1642002 (2016)
Shuang Sha1、2, Fei Yang1、2, Anle Wang1、2, Honglin Jin1、2, Zhihong Zhang1、2, and Qiaoya Lin1、2、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology Wuhan 430074, P. R. China
  • 2MoE Key Laboratory for Biomedical Photonics Department of Biomedical Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China
  • show less
    DOI: 10.1142/s1793545816420025 Cite this Article
    Shuang Sha, Fei Yang, Anle Wang, Honglin Jin, Zhihong Zhang, Qiaoya Lin. Fluorescent and quantitative mitochondrial redox imaging of tumor targeted by Octa-RGD probe[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1642002 Copy Citation Text show less
    References

    [1] A. van der Flier, A. Sonnenberg, "Function and interactions of integrins," Cell Tissue Res. 305, 285–298 (2001).

    [2] G. Christofori, "Changing neighbours, changing behaviour: Cell adhesion molecule-mediated signalling during tumour progression," EMBO J. 22, 2318–2323 (2003).

    [3] R. O. Hynes, "Integrins: Bidirectional, allosteric signaling machines," Cell 110, 673–687 (2002).

    [4] A. N. Elayadi, K. N. Samli, L. Prudkin, Y. H. Liu, A. Bian, X. J. Xie, Wistuba II, J. A. Roth, M. J. McGuire, K. C. Brown, "A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for nonsmall cell lung cancer," Cancer Res. 67, 5889–5895 (2007).

    [5] S. H. Hausner, C. K. Abbey, R. J. Bold, M. K. Gagnon, J. Marik, J. F. Marshall, C. E. Stanecki, J. L. Sutcliffe, "Targeted in vivo imaging of integrin alphavbeta6 with an improved radiotracer and its relevance in a pancreatic tumor model," Cancer Res. 69, 5843–5850 (2009).

    [6] E. M. Nothelfer, S. Zitzmann-Kolbe, R. Garcia-Boy, S. Kramer, C. Herold-Mende, A. Altmann, M. Eisenhut, W. Mier, U. Haberkorn, "Identification and characterization of a peptide with affinity to head and neck cancer," J. Nucl. Med. 50, 426–434 (2009).

    [7] J. R. Hsiao, Y. Chang, Y. L. Chen, S. H. Hsieh, K. F. Hsu, C. F. Wang, S. T. Tsai, Y. T. Jin, "Cyclic alphavbeta6-targeting peptide selected from biopanning with clinical potential for head and neck squamous cell carcinoma," Head Neck 32, 160–172 (2010).

    [8] A. Eldar-Boock, K. Miller, J. Sanchis, R. Lupu, M. J. Vicent, R. Satchi-Fainaro, "Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel," Biomaterials 32, 3862–3874 (2011).

    [9] K. Chen, X. Chen, "Integrin targeted delivery of chemotherapeutics," Theranostics 1, 189–200 (2011).

    [10] J. S. Desgrosellier, D. A. Cheresh, "Integrins in cancer: Biological implications and therapeutic opportunities," Nat. Rev. Cancer 10, 9–22 (2010).

    [11] J. Shi, Z. Jin, X. Liu, D. Fan, Y. Sun, H. Zhao, Z. Zhu, Z. Liu, B. Jia, F. Wang, "PET imaging of neovascularization with (68)Ga-3PRGD2 for assessing tumor early response to Endostar antiangiogenic therapy," Mol. Pharm. 11, 3915–3922 (2014).

    [12] S. H. Hausner et al., "Use of a peptide derived from foot-and-mouth disease," Cancer Res. 67 (2007).

    [13] R. H. Kimura, R. Teed, B. J. Hackel, M. A. Pysz, C. Z. Chuang, A. Sathirachinda, J. K. Willmann, S. S. Gambhir, "Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer," Clin. Cancer Res. 18, 839–849 (2012).

    [14] J. S. Guthi, S. G. Yang, G. Huang, S. Li, C. Khemtong, C. W. Kessinger, M. Peyton, J. D. Minna, K. C. Brown, J. Gao, "MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells," Mol. Pharm. 7, 32–40 (2010).

    [15] X. Montet, K. Montet-Abou, F. Reynolds, R. Weissleder, L. Josephson, "Nanoparticle imaging of integrins on tumor cells," Neoplasia 8, 214–222 (2006).

    [16] J. D. Keasling, A. Mendoza, P. S. Baran, "Synthesis: A constructive debate," Nature 492, 188–189 (2012).

    [17] Shemiakina II, G. V. Ermakova, P. J. Cranfill, M. A. Baird, R. A. Evans, E. A. Souslova, D. B. Staroverov, A. Y. Gorokhovatsky, E. V. Putintseva, T. V. Gorodnicheva, T. V. Chepurnykh, L. Strukova, S. Lukyanov, A. G. Zaraisky, M. W. Davidson, D. M. Chudakov, D. Shcherbo, "A monomeric red fluorescent protein with low cytotoxicity," Nat. Commun. 3, 1204 (2012).

    [18] D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, D. M. Chudakov, "Bright far-red fluorescent protein for whole-body imaging," Nat. Methods 4, 741–746 (2007).

    [19] H. Luo, J. Yang, H. Jin, C. Huang, J. Fu, F. Yang, H. Gong, S. Zeng, Q. Luo, Z. Zhang, "Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo," Faseb J. 25, 1865–1873 (2011).

    [20] H. Kobayashi, R. Watanabe, P. L. Choyke, "Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target ," Theranostics 4, 81–89 (2013).

    [21] R. A. Cairns, I. S. Harris, T. W. Mak, "Regulation of cancer cell metabolism," Nat. Rev. Cancer 11, 85–95 (2011).

    [22] M. R. Junttila, F. J. de Sauvage, "Influence of tumour micro-environment heterogeneity on therapeutic response," Nature 501, 346–354 (2013).

    [23] M. Wu, A. Neilson, A. L. Swift, R. Moran, J. Tamagnine, D. Parslow, S. Armistead, K. Lemire, J. Orrell, J. Teich, S. Chomicz, D. A. Ferrick, "Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells," Am. J. Physiol. Cell Physiol. 292, C125–136 (2007).

    [24] S. Walker-Samuel, R. Ramasawmy, F. Torrealdea, M. Rega, V. Rajkumar, S. P. Johnson, S. Richardson, M. Goncalves, H. G. Parkes, E. Arstad, D. L. Thomas, R. B. Pedley, M. F. Lythgoe, X. Golay, "In vivo imaging of glucose uptake and metabolism in tumors," Nat. Med. 19, 1067–1072 (2013).

    [25] S. Bisdas, K. Spicer, Z. Rumboldt, "Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: A pilot study using combined positronemission tomography/CT imaging," AJNR Am. J. Neuroradiol. 29, 1376–1381 (2008).

    [26] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).

    [27] H. N. Xu, L. Z. Li, "Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity," J. Innov. Opt. Health. Sci. 7, 1430002-1-20 (2014).

    [28] I. E. Hassinen, "From identification of fluorescent flavoproteins to mitochondrial redox indicators in intact tissues," J. Innov. Opt. Health. Sci. 7 (2014).

    [29] T. Xiong, Z. Zhang, B. F. Liu, S. Zeng, Y. Chen, J. Chu, Q. Luo, "In vivo optical imaging of human adenoid cystic carcinoma cell metastasis," Oral Oncol. 41, 709–715 (2005).

    [30] Z. Zhang, H. Li, Q. Liu, L. Zhou, M. Zhang, Q. Luo, J. Glickson, B. Chance, G. Zheng, "Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers," Biosens. Bioelectron. 20, 643–650 (2004).

    [31] H. J. Garrigues, Y. E. Rubinchikova, C. M. Dipersio, T. M. Rose, "Integrin alphaVbeta3 Binds to the RGD motif of glycoprotein B of Kaposi's sarcomaassociated herpesvirus and functions as an RGDdependent entry receptor," J. Virol. 82, 1570–1580 (2008).

    [32] Z. Yang, Z. Lei, B. Li, Y. Zhou, G. M. Zhang, Z. H. Feng, B. Zhang, G. X. Shen, B. Huang, "Rapamycin inhibits lung metastasis of B16 melanoma cells through down-regulating alphav integrin expression and up-regulating apoptosis signaling," Cancer Sci. 101, 494–s500 (2010).

    [33] A. Taherian, X. Li, Y. Liu, T. A. Haas, "Differences in integrin expression and signaling within human breast cancer cells," BMC Cancer 11, 293 (2011).

    [34] J. Ou, W. Luan, J. Deng, R. Sa, H. Liang, "AlphaV integrin induces multicellular radioresistance in human nasopharyngeal carcinoma via activating SAPK/JNK pathway," PLoS One 7, e38737 (2012).

    [35] A. A. Heikal, "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies," Biomark. Med. 4, 241–263 (2010).

    [36] O. Tredan, C. M. Galmarini, K. Patel, I. F. Tannock, "Drug resistance and the solid tumor microenvironment," J. Natl. Cancer Inst. 99, 1441–1454 (2007).

    [37] F. Danhier, B. Vroman, N. Lecouturier, N. Crokart, V. Pourcelle, H. Freichels, C. Jerome, J. Marchand- Brynaert, O. Feron, V. Preat, "Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel," J. Control. Release 140, 166–173 (2009).

    [38] A. I. Minchinton, I. F. Tannock, "Drug penetration in solid tumours," Nat. Rev. Cancer 6, 583–592 (2006).

    [39] H. N. Xu, S. Nioka, J. D. Glickson, B. Chance, L. Z. Li, "Quantitative mitochondrial redox imaging of breast cancer metastatic potential," J. Biomed. Opt. 15, 036010 (2010).

    Shuang Sha, Fei Yang, Anle Wang, Honglin Jin, Zhihong Zhang, Qiaoya Lin. Fluorescent and quantitative mitochondrial redox imaging of tumor targeted by Octa-RGD probe[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1642002
    Download Citation