• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 189 (2022)
Wenkai LI, Ning ZHAO, Zhijie BI, and Xiangxin GUO
Author Affiliations
  • College of Physical Sciences, Qingdao University, Qingdao 266071, China
  • show less
    DOI: 10.15541/jim20210486 Cite this Article
    Wenkai LI, Ning ZHAO, Zhijie BI, Xiangxin GUO. Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property [J]. Journal of Inorganic Materials, 2022, 37(2): 189 Copy Citation Text show less
    References

    [1] L JIAN Z, L ZHAO, L PAN H et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium-ion batteries. Electrochemistry Communications, 14, 86-89(2012).

    [2] L ZHAO, M ZHAO J, S HU Y et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Advanced Energy Materials, 2, 962-965(2012).

    [3] L RUAN Y, F GUO, J LIU J et al. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceramics International, 45, 1770-1776(2019).

    [4] J VETTER, P NOVAK, R WAGNER M et al. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269-281(2005).

    [5] N KAMAYA, K HOMMA, Y YAMAKAWA et al. A lithium superionic conductor. Nature Materials, 10, 682-686(2011).

    [6] M TARASCON J, M ARMAND. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367(2001).

    [7] A KHOKHAR W, N ZHAO, L HUANG W et al. Different behaviors of metal penetration in Na and Li solid electrolytes. ACS Applied Materials & Interfaces, 12, 53781-53787.

    [8] M OUDENHOVEN J F, L BAGGETTO, L NOTTEN P H. All- solid-state lithium-ion microbatteries: a review of various three- dimensional concepts. Advanced Energy Materials, 1, 10-33(2011).

    [9] L ZHAO C, L LIU L, G QI X et al. Solid-state sodium batteries. Advanced Energy Materials, 8, 1703012(2017).

    [10] A HAYASHI, K NOI, A SAKUDA et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications, 3, 856(2012).

    [11] F LOU S, F ZHANG, K FU C et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Advanced Materials, 33, 2000721(2020).

    [12] L HUANG W, N ZHAO, J BI Z et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?. Materials Today Nano, 10, 100075(2020).

    [13] L JIAN Z, S HU Y, L JI X et al. NASICON-structured materials for energy storage. Advanced Materials, 29, 1601925(2016).

    [14] R HOU W, W GUO X, Y SHEN X et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy, 52, 279-291(2018).

    [15] B GOODENOUGH J, H Y P HONG, J A KAFALAS. Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 11, 203-220(1976).

    [16] P HONG H Y. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12. Materials Research Bulletin, 11, 173-182(1976).

    [17] B RAN L, A BAKTASH, M LI et al. Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries’ performance. Energy Storage Materials, 40, 282-291(2021).

    [18] J YANG, Z LIU G, M AVDEEV et al. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Letters, 5, 2835-2841(2020).

    [19] Y LENG H, J HUANG J, Y NIE J et al. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. Journal of Power Sources, 391, 170-179(2018).

    [20] C HUANG C, M YANG G, H YU W et al. Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes. Journal of Alloys And Compounds, 855, 157501(2021).

    [21] Z ZHANG Z, H ZHANG Q, N SHI J et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Advanced Energy Materials, 7, 1601196(2017).

    [22] N ANANTHARAMULU, K RAO K, G RAMBABU et al. A wide-ranging review on Nasicon type materials. Journal of Materials Science, 46, 2821-2837(2011).

    [23] X WANG X, H LIU Z, H TANG Y et al. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-ion batteries. Journal of Power Sources, 481, 228924(2021).

    [24] M GRADY Z, K TSUJI, A NDAYISHIMIYE et al. Densification of a solid-state NASICON sodium-ion electrolyte below 400 ℃ by cold sintering with a fused hydroxide solvent. ACS Applied Energy Materials, 3, 4356-4366(2020).

    [25] J SHAO Y, M ZHONG G, X LU Y et al. A novel NASICON- based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 23, 514-521(2019).

    [26] Y LENG H, Y NIE J, J LUO. Combining cold sintering and Bi2O3-activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures. Journal of Materiomics, 5, 237-246(2019).

    [27] S OH J A, C HE L, A PLEWA et al. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering. ACS Applied Materials & Interfaces, 11, 40125-40133(2019).

    [28] J G P DA SILVA, M BRAM, M LAPTEV A et al. Sintering of a sodium-based NASICON electrolyte: a comparative study between cold, field assisted and conventional sintering methods. Journal of the European Ceramic Society, 39, 2697-2702(2019).

    [29] H WANG, K OKUBO, M INADA et al. Low temperature- densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering. Solid State Ionics, 322, 54-60(2018).

    [30] Y HUO H, J GAO, N ZHAO et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nature Communications, 12, 176(2021).

    [31] Y JIA M, N ZHAO, Y HUO H et al. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochemical Energy Reviews, 3, 656-689(2020).

    [32] N ZHAO, W KHOKHAR, J BI Z et al. Solid garnet batteries. Joule, 3, 1190-1199(2019).

    [33] B VERTRUYEN, N ESHRAGHI, C PIFFET et al. Spray-drying of electrode materials for lithium- and sodium-ion batteries. Materials, 11, 1076(2018).

    [34] Y KOU Z, C MIAO, Y WANG Z et al. Novel NASICON-type structural Li1.3Al0.3Ti1.7SixP5(3-0.8x)O12 solid electrolytes with improved ionic conductivity for lithium ion batteries. Solid State Ionics, 343, 115090(2019).

    [35] L SHEN, J YANG, Z LIU G et al. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries. Materials Today Energy, 20, 100691(2021).

    [36] Q LI Y, Z WANG, L LI C et al. Densification and ionic- conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 248, 642-646(2014).

    Wenkai LI, Ning ZHAO, Zhijie BI, Xiangxin GUO. Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property [J]. Journal of Inorganic Materials, 2022, 37(2): 189
    Download Citation