• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 6, 1815 (2020)
KU Ya-lun1, YANG Ming-xing1、2、*, and LI Yan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)06-1815-06 Cite this Article
    KU Ya-lun, YANG Ming-xing, LI Yan. Spectroscopic Study of Green-Yellow and Green Turquoise Associated Minerals from Zhushan, Hubei Province[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1815 Copy Citation Text show less

    Abstract

    Recently, there have been many natural minerals commonly known as “turquoise associated minerals”, which are rich in color, such as purple, white, brown, yellow-green, green and so on. However, green-yellow and green turquoise associated minerals have a more similar appearance to other color turquoise associated minerals and are more difficult to identify. In this study, to explore their different features, two green-yellow and green turquoise associated minerals samples (sample E and sample F) were selected from Zhushan County market of Hubei Province. These minerals have been used for the basic gemological test, electron microprobe micro, X-ray powder diffractometer, micro-laser Raman spectrometer as well as Ultraviolet-Visible spectrometer. The test results show that the main mineral components of the associated ores are fluorapatite, muscovite and so on. The results of electron microprobe backscattering photographs show that the associated mineral samples are polyphase mixtures of tiny crystalline particles. And quantitative analysis of the chemical composition of the two phases shows that the dark phase is an aluminium-containing silicate, while the light phase is calcium-containing phosphate. In addition, the samples also contained CuO (2.27%~6.22%) and FeO (2.43%~4.99%), whereas the contents of CuO and FeO in sample F are higher than those in sample E. Furthermore. Damaging test of X-ray powder diffraction can accurately test the main minerals of the samples which are fluorapatite, muscovite and a small amount of turquoise. The typical Raman spectra of fluorapatite near 964 cm-1 and muscovite near 203, 432, 709 and 3 626 cm-1 can be effectively identified from turquoise. The results of ultraviolet-visible absorption spectroscopy show that the color origin of the samples is similar to that of turquoise, mainly due to the electron transition of Cu2+ and Fe3+ ions. Based on the relatively systematic spectroscopic testing of the samples, the authors suggest that Raman spectroscopy is a nondestructive, rapid and effective method for identifying different mineral phases in turquoise associated minerals. The typical Raman peaks of fluorapatite and Muscovite can effectively distinguish them from turquoise.
    KU Ya-lun, YANG Ming-xing, LI Yan. Spectroscopic Study of Green-Yellow and Green Turquoise Associated Minerals from Zhushan, Hubei Province[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1815
    Download Citation