• Infrared and Laser Engineering
  • Vol. 49, Issue 9, 20201033 (2020)
Jingwen He1, Tao Dong1, and Yan Zhang2、*
Author Affiliations
  • 1State Key Laboratory of Space-Ground Integrated Information Technology, Beijing Institute of Satellite Information Engineering, Beijing 100095, China
  • 2Beijing Advanced Innovation Center for Imaging Theory and Technology, Beijing Key Lab of Metamaterials and Devices, Department of Physics, Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.3788/IRLA20201033 Cite this Article
    Jingwen He, Tao Dong, Yan Zhang. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared and Laser Engineering, 2020, 49(9): 20201033 Copy Citation Text show less
    References

    [1] S Fan, Y He, B S Ung. The growth of biomedical terahertz research. Journal of Physics D: Applied Physics, 47, 374009(2014).

    [2] S J Oh, S-H Kim, K Jeong. Measurement depth enhancement in terahertz imaging of biological tissues. Optics Express, 21, 21299-21305(2013).

    [3] M H Arbab, D P Winebrenner, T C Dickey. Terahertz spectroscopy for the assessment of burn injuries in vivo. Journal of Biomedical Optics, 18, 077004(2013).

    [4] D Clery. Brainstorming their way to an imaging revolution. Science, 297, 761-763(2002).

    [5] T S Rappaport, Y C Xing, O Kanhere. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access, 7, 78729-78757(2019).

    [6] E Basar, Renzo M Di, Rosny J De. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753-116773(2019).

    [7] E Basar. Reconfigurable intelligent surface-based index modulation: a new beyond mimo paradigm for 6G. IEEE Transactions on Communications, 68, 3187-3196(2020).

    [8] D R Smith, W J Padilla, D C Vier. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184-4187(2000).

    [9] J Valentine, S Zhang, T Zentgraf. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [10] O Paul, B Reinhard, B Krolla. Gradient index metamaterial based on slot elements. Applied Physics Letters, 96, 241110(2010).

    [11] N Yu, P Genevet, M A Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [12] S A Kuznetsov, M A Astafev, M Beruete. Planar holographic metasurfaces for terahertz focusing. Scientific Reports, 5, 7738(2015).

    [13] H Zhao, X Wang, J He. High-efficiency terahertz devices based on cross-polarization converter. Scientific Reports, 7, 17882(2017).

    [14] N K Grady, J E Heyes, D R Chowdhury. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [15] M Jia, Z Wang, H Li. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light: Science & Applications, 8, 16(2019).

    [16] D Hu, X Wang, S Feng. Ultrathin terahertz planar elements. Advanced Optical Materials, 1, 186-191(2013).

    [17] Q Yang, J Gu, D Wang. Efficient flat metasurface lens for terahertz imaging. Optics Express, 22, 25931-25939(2014).

    [18] Q Wang, X Q Zhang, Y H Xu. A broadband metasurface-based terahertz flat-lens array. Advanced Optical Materials, 3, 779-785(2015).

    [19] J He, T Dong, B Chi. Meta-hologram for three-dimensional display in terahertz waveband. Microelectronic Engineering, 220, 111151(2020).

    [20] J He, X Wang, D Hu. Generation and evolution of the terahertz vortex beam. Optics Express, 21, 20230-20239(2013).

    [21] J He, S Wang, Z Xie. Abruptly autofocusing terahertz waves with meta-hologram. Optics Letters, 41, 2787-2790(2016).

    [22] J-Y Guo, X-K Wang, J-W He. Generation of radial polarized Lorentz beam with single layer metasurface. Advanced Optical Materials, 6, 1700925(2018).

    [23] L Liang, M Qi, J Yang. Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Advanced Optical Materials, 3, 1374-1380(2015).

    [24] L-H Gao, Q Cheng, J Yang. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science & Applications, 4, e324-e324(2015).

    [25] S Liu, T J Cui, L Zhang. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Advanced Science, 3, 1600156(2016).

    [26] B Wang, B Quan, J He. Wavelength de-multiplexing metasurface hologram. Scientific Reports, 6, 35657(2016).

    [27] S Wang, X Wang, Q Kan. Spin-selected focusing and imaging based on metasurface lens. Optics Express, 23, 26434-26441(2015).

    [28] H Zhang, X Zhang, X Quan. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Advanced Optical Materials, 6, 1700773(2018).

    [29] M Seo, J Kyoung, H Park. Active terahertz nanoantennas based on VO2 phase transition. Nano Letters, 10, 2064-2068(2010).

    [30] M Liu, H Y Hwang, H Tao. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [31] Z Fang, S Thongrattanasiri, A Schlather. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7, 2388-2395(2013).

    [32] L Ju, B Geng, J Horng. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6, 630-634(2011).

    [33] B Wei, W Hu, Y Ming. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Advanced Materials, 26, 1590-1595(2014).

    [34] N Kanda, K Konishi, M Kuwata-Gonokami. All-photoinduced terahertz optical activity. Optics Letters, 39, 3274-3277(2014).

    [35] T T Lv, Z Zhu, J H Shi. Optically controlled background-free terahertz switching in chiral metamaterial. Optics Letters, 39, 3066-3069(2014).

    [36] N H Shen, M Massaouti, M Gokkavas. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 106, 037403(2011).

    [37] H T Chen, W J Padilla, J M O Zide. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 32, 1620-1622(2007).

    [38] J He, Z Xie, W Sun. Terahertz tunable metasurface lens based on vanadium dioxide phase transition. Plasmonics, 11, 1285-1290(2016).

    [39] T Wang, J He, J Guo. Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide. Optics Express, 27, 20347-20357(2019).

    [40] X Liu, Q Wang, X Zhang. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Advanced Optical Materials, 7, 1900175(2019).

    [41] G Georgiou, C Tserkezis, M C Schaafsma. Active loaded plasmonic antennas at terahertz frequencies: optical control of their capacitive-inductive coupling. Physical Review B, 91, 125443(2015).

    [42] N Large, M Abb, J Aizpurua. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Letters, 10, 1741-1746(2010).

    [43] G Georgiou, H K Tyagi, P Mulder. Photo-generated Thz antennas. Scientific Reports, 4, 3584(2014).

    [44] T P Steinbusch, H K Tyagi, M C Schaafsma. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films. Optics Express, 22, 26559-26571(2014).

    [45] T Okada, K Ooi, Y Nakata. Direct creation of a photoinduced metallic structure and its optical properties in the terahertz frequency region. Optics Letters, 35, 1719-1721(2010).

    [46] N Kanda, K Konishi, M Kuwata-Gonokami. Dynamics of photo-induced terahertz optical activity in metal chiral gratings. Optics Letters, 37, 3510-3512(2012).

    [47] I Chatzakis, P Tassin, L Luo. One- and two-dimensional photo-imprinted diffraction Gratings for Manipulating terahertz waves. Applied Physics Letters, 103, 043101(2013).

    [48] T Okada, K Tanaka. Photo-designed terahertz devices. Scientific Reports, 1, 121(2011).

    [49] N Kamaraju, A Rubano, L Jian. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials. Light: Science & Applications, 3, e155(2014).

    [50] J W He, X K Wang, Z W Xie. Reconfigurable terahertz grating with enhanced transmission of TE polarized light. APL Photonics, 2, 076102(2017).

    [51] X Wang, Z Xie, W Sun. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate. Optics Letters, 38, 4731-4734(2013).

    [52] Z Xie, J He, X Wang. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers. Optics Letters, 40, 359-362(2015).

    [53] J Guo, T Wang, H Zhao. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials, 7, 1801696(2019).

    CLP Journals

    [1] Hengze Yang, Chuanyu Liu, Jingzhi Wu, Yanhong Wang. Design of coupled structure of terahertz rectangular waveguide and coplanar waveguide[J]. Infrared and Laser Engineering, 2022, 51(8): 20210733

    [2] Qingyuan Yang, Wei Wang, Xiang Tian. High numerical aperture bifocal metalens with regulatory focusing intensity[J]. Infrared and Laser Engineering, 2022, 51(5): 20210602

    [3] Jiaqi Liu, Yongzhi Cheng, Fu Chen, Hui Luo, Xiangcheng Li. High-efficiency wavefront manipulation based on geometric phase metasurface for circularly polarized terahertz wave at two frequencies independently[J]. Infrared and Laser Engineering, 2023, 52(2): 20220377

    [4] Chunjie Feng, Xiaobo Zhu, Yanghui Wu, Chen Fu, Huiyu Chang, Yutao Yue, Wenhua Gu. Application of electrostatic jet-print technology in terahertz metasurface devices fabrication[J]. Infrared and Laser Engineering, 2022, 51(2): 20210878

    Jingwen He, Tao Dong, Yan Zhang. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared and Laser Engineering, 2020, 49(9): 20201033
    Download Citation