• Chinese Optics Letters
  • Vol. 19, Issue 10, 103201 (2021)
Hao Guo1、2, Xiang Dong3, Tie-Jun Wang1、2、*, Xuan Zhang1, Na Chen1, Fukang Yin1、2, Yihai Wang1、4, Lingang Zhang1, Haiyi Sun1, Jun Liu1、2, Jiansheng Liu5, Baifei Shen5, Olga Kosareva6, Yuxin Leng1、2, and Ruxin Li1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Physics, College of Arts and Science, University of Colorado Boulder, Boulder, CO 80309, USA
  • 4College of Physics, Guizhou University, Guiyang 550025, China
  • 5Department of Physics, Shanghai Normal University, Shanghai 200234, China
  • 6Physics Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
  • show less
    DOI: 10.3788/COL202119.103201 Cite this Article Set citation alerts
    Hao Guo, Xiang Dong, Tie-Jun Wang, Xuan Zhang, Na Chen, Fukang Yin, Yihai Wang, Lingang Zhang, Haiyi Sun, Jun Liu, Jiansheng Liu, Baifei Shen, Olga Kosareva, Yuxin Leng, Ruxin Li. Polarization dependent clamping intensity inside a femtosecond filament in air[J]. Chinese Optics Letters, 2021, 19(10): 103201 Copy Citation Text show less
    References

    [1] J. Kasparian, J. P. Wolf. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express, 16, 466(2008).

    [2] J. P. Wolf. Short-pulse lasers for weather control. Rep. Prog. Phys., 81, 026001(2018).

    [3] S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, Z. Z. Xu. Advances in intense femtosecond laser filamentation in air. Laser Phys., 22, 1(2012).

    [4] V. P. Kandidov, S. A. Shlenov, O. G. Kosareva. Filamentation of high-power femtosecond laser radiation. Quantum Electron., 39, 205(2009).

    [5] L. Berge, S. Skupin, R. Nuter, J. Kasparian, J. P. Wolf. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys., 70, 1633(2007).

    [6] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47(2007).

    [7] S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, H. Schroeder. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can. J. Phys., 83, 863(2005).

    [8] S. L. Chin. Femtosecond Laser Filamentation(2010).

    [9] S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, V. P. Kandidov. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonlinear Opt. Phys. Mater., 8, 121(1999).

    [10] Y. Liu, T.-J. Wang, N. Chen, H. Guo, H. Sun, L. Zhang, Z. Qi, Y. Leng, Z. Wang, R. Li. Simultaneous generation of controllable double white light lasers by focusing an intense femtosecond laser pulse in air. Chin. Opt. Lett., 18, 121402(2020).

    [11] Q. Luo, W. Liu, S. L. Chin. Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B, 76, 337(2003).

    [12] J. P. Yao, B. Zeng, H. L. Xu, G. H. Li, W. Chu, J. L. Ni, H. S. Zhang, S. L. Chin, Y. Cheng, Z. Z. Xu. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A, 84, 051802(2011).

    [13] Y. X. Liu, T. J. Wang, N. Chen, S. Z. Du, J. J. Ju, H. Y. Sun, C. Wang, J. S. Liu, H. H. Lu, S. L. Chin, R. X. Li, Z. Z. Xu, Z. S. Wang. Probing the effective length of plasma inside a filament. Opt. Express, 25, 11078(2017).

    [14] T. J. Wang, Y. X. Wei, Y. X. Liu, N. Chen, Y. H. Liu, J. J. Ju, H. Y. Sun, C. Wang, H. H. Lu, J. S. Liu, S. L. Chin, R. X. Li, Z. Z. Xu. Direct observation of laser guided corona discharges. Sci. Rep., 5, 18681(2016).

    [15] S. Z. Du, T. J. Wang, Z. B. Zhu, Y. X. Liu, N. Chen, J. H. Zhang, H. Guo, H. Y. Sun, J. J. Ju, C. Wang, J. S. Liu, S. L. Chin, R. X. Li, Z. Z. Xu. Laser guided ionic wind. Sci. Rep., 8, 13511(2018).

    [16] G. Fibich, B. Ilan. Multiple filamentation of circularly polarized beams. Phys. Rev. Lett., 89, 013901(2002).

    [17] S. Mitryukovskiy, Y. Liu, P. J. Ding, A. Houard, A. Mysyrowicz. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Opt. Express, 22, 12750(2014).

    [18] C. Meng, W. B. Chen, X. W. Wang, Z. H. Lu, Y. D. Huang, J. L. Liu, D. W. Zhang, Z. X. Zhao, J. M. Yuan. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett., 109, 131105(2016).

    [19] S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J. C. Diels, L. Arissian, M. Baudelet, M. Richardson. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments. Sci. Rep., 6, 20363(2016).

    [20] N. Chen, T.-J. Wang, Z. Zhu, H. Guo, Y. Liu, F. Yin, H. Sun, Y. Leng, R. Li. Laser ellipticity-dependent supercontinuum generation by femtosecond laser filamentation in air. Opt. Lett., 45, 4444(2020).

    [21] N. A. Panov, V. A. Makarov, V. Y. Fedorov, O. G. Kosareva. Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect. Opt. Lett., 38, 537(2013).

    [22] N. A. Panov, O. G. Kosareva, A. B. Savel’ev, D. S. Uryupina, I. A. Perezhogin, V. A. Makarov. Filamentation of femtosecond Gaussian pulses with close-to-linear or -circular elliptical polarisation. Quantum Electron., 41, 160(2011).

    [23] M. Kolesik, J. V. Moloney, E. M. Wright. Polarization dynamics of femtosecond pulses propagating in air. Phys. Rev. E, 64, 046607(2001).

    [24] Z. B. Zhu, T. J. Wang, Y. X. Liu, N. Chen, H. F. Zhang, H. Y. Sun, H. Guo, J. H. Zhang, X. Zhang, G. Y. Li, C. D. Liu, Z. N. Zeng, J. S. Liu, S. L. Chin, R. X. Li, Z. Z. Xu. Polarization-dependent femtosecond laser filamentation in air. Chin. Opt. Lett., 16, 073201(2018).

    [25] P. J. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments. Phys. Rev. A, 94, 043824(2016).

    [26] S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses. Phys. Rev. Lett., 114, 063003(2015).

    [27] G. Ghosh. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun., 163, 95(1999).

    [28] S. Petit, A. Talebpour, A. Proulx, S. L. Chin. Polarization dependence of the propagation of intense laser pulses in air. Opt. Commun., 175, 323(2000).

    [29] J. S. Liu, Z. L. Duan, Z. N. Zeng, X. H. Xie, Y. P. Deng, R. X. Li, Z. Z. Xu, S. L. Chin. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air. Phys. Rev. E, 72, 026412(2005).

    [30] X. L. Liu, W. B. Cheng, M. Petrarca, P. Polynkin. Measurements of fluence profiles in femtosecond laser filaments in air. Opt. Lett., 41, 4751(2016).

    [31] S. I. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz. Re-evaluation of the peak intensity inside a femtosecond laser filament in air. J. Phys. B: At. Mole. Opt. Phys., 48, 094003(2015).

    [32] H. Li, W. Chu, H. Zang, H. Xu, Y. Cheng, S. L. Chin. Critical power and clamping intensity inside a filament in a flame. Opt. Express, 24, 3424(2016).

    [33] H. Guo, T.-J. Wang, X. Zhang, C. Liu, N. Chen, Y. Liu, H. Sun, B. Shen, Y. Jin, Y. Leng, R. Li. Direct measurement of radial fluence distribution inside a femtosecond laser filament core. Opt. Express, 28, 15529(2020).

    [34] F. Theberge, W. W. Liu, P. T. Simard, A. Becker, S. L. Chin. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Phys. Rev. E, 74, 036406(2006).

    [35] S. Akturk, A. Couairon, M. Franco, A. Mysyrowicz. Spectrogram representation of pulse self compression by filamentation. Opt. Express, 16, 17626(2008).

    [36] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. Ramirez-Gongora, M. Kolesik. Practitioner’s guide to laser pulse propagation models and simulation. Eur. Phys. J. Spec. Top., 199, 5(2011).

    [37] N. Panov, V. Makarov, K. Grigoriev, M. Yatskevitch, O. Kosareva. Generation of polarization singularities in the self-focusing of an elliptically polarized laser beam in an isotropic Kerr medium. Phys. D: Nonlinear Phenom., 332, 73(2016).

    [38] J. P. Palastro. Time-dependent polarization states of high-power, ultrashort laser pulses during atmospheric propagation. Phys. Rev. A, 89, 013804(2014).

    [39] A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz. Infrared femtosecond light filaments in air: simulations and experiments. J. Opt. Soc. Am. B, 19, 1117(2002).

    [40] A. Perelomov, V. Popov, M. Terent’ev. Ionization of atoms in an alternating electric field. Sov. Phys. JETP, 23, 207(1967).

    [41] S. Popruzhenko, V. Mur, V. Popov, D. Bauer. Strong field ionization rate for arbitrary laser frequencies. Phys. Rev. Lett., 101, 193003(2008).

    [42] A. Bandrauk, E. Lorin, J. V. Moloney. Laser Filamentation: Mathematical Methods and Models, 112(2016).

    [43] R. W. Boyd. Nonlinear Optics(2020).

    Data from CrossRef

    [1] Yan-Yun Tu, Chao Meng, Xu Sun, Hai-Zhong Wu, Pan Song, Cong-Sen Meng, Xiao-Wei Wang, Zhao-Yan Zhou, Zhi-Hui Lyu, Dong-Wen Zhang, Zeng-Xiu Zhao, Jian-Min Yuan. Enhancement of terahertz radiation from a filament by using circularly polarized two-color laser fields. Journal of the Optical Society of America B, 39, A83(2022).

    Hao Guo, Xiang Dong, Tie-Jun Wang, Xuan Zhang, Na Chen, Fukang Yin, Yihai Wang, Lingang Zhang, Haiyi Sun, Jun Liu, Jiansheng Liu, Baifei Shen, Olga Kosareva, Yuxin Leng, Ruxin Li. Polarization dependent clamping intensity inside a femtosecond filament in air[J]. Chinese Optics Letters, 2021, 19(10): 103201
    Download Citation