• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 3, 1350070 (2014)
Jia-Rui Wang1, Guang-Yuan Yu2, Zai-Fu Yang1、*, Lu-Guang Jiao1, Hong-Xia Chen2, and Xian-Biao Zou2
Author Affiliations
  • 1Department of Laser and Electromagnetic Biology Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
  • 2Department of Dermatology, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P. R. China
  • show less
    DOI: 10.1142/s1793545813500703 Cite this Article
    Jia-Rui Wang, Guang-Yuan Yu, Zai-Fu Yang, Lu-Guang Jiao, Hong-Xia Chen, Xian-Biao Zou. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1350070 Copy Citation Text show less
    References

    [1] Y. Barkana, M. Belkin, "Laser eye injuries," Surv. Ophthalmaol. 44, 459–478 (2000).

    [2] B. J. Rockwell, R. J. Thomas, A. Vogel, "Ultrashort laser pulse retinal damage mechanisms and their impact on thresholds," Med. Laser Appl. 25, 84–92 (2010).

    [3] D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, "What is the meaning of thresholds in laser injury experiments Implications for human exposure limits," Health Phys. 82, 335–347 (2001).

    [4] J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. Mclin, "Laser induced retinal damage threshold as a function of retinal image size," Proc. SPIE 3591, 335–343 (1999).

    [5] D. J. Lund, K. Schulmeister, B. Seiser, F. Edthofer, "Laser-induced retinal injury thresholds: Variation with retinal irradiated area," Proc. SPIE 5688, 469–478 (2005).

    [6] R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clerk, A. J. Welch, "First-order model of thermal lensing in a virtual eye," J. Opt. Soc. Am. A 26, 548–558 (2006).

    [7] C. P. Cain, C. A. Totb, G. D. Noojin, V. Carotbers, D. J. Stolarski, B. J. Rockwell, "Thresholds for visible lesions in the primate eye produced by ultrashort near-infrared laser pulses," Invest. Ophthalmol. Vis. Sci. 40, 2343–2352 (1999).

    [8] G. Schuele, M. Rumohr, G. Huettmann, R. Brinkmann, "RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen," Invest. Ophthalmol. Vis. Sci. 46, 714–719 (2005).

    [9] C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, S. Cora, B. A. Rockwell, "Visible lesion threshold dependence on retina spot size for femtosecond laser pulses," J. Laser Appl. 13, 125–131 (2001).

    [10] E. S. Beatrice, G. D. Frich, "Retinal laser damage thresholds as a function of the image diameter," Arch. Environ. Health 27, 322–326 (1973).

    [11] ICBIRP, "ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1000 μm," Health Phys. 105, 272–295 (2013).

    [12] K. Schulmeister, B. Seiser, F. Edthofer, D. Lund, "Modelling of the laser spot size dependence of retinal thermal damage," Proc. Int. Laser Safety Conf., pp. 48–57 (2005).

    [13] K. Schulmeister, B. E. Stuck, D. J. Lund, D. H. Sliney, "Review of thresholds and recommendations for revised exposure limits for laser and optical radiation for thermally induced retinal injury," Health Phys. 100, 210–220 (2011).

    [14] G. Li, H. Zwick, B. Stuck, D. J. Lund, "On the use of schematic eye models to estimate retinal image quality," J. Biomed. Opt. 5, 307–314 (2000).

    [15] D. A. Atchision, "Calculating relative retinal image sizes of eyes," Ophthamol. Physiol. Opt. 16, 532–538 (1996).

    [16] G. D. Frish, "Retinal laser irradiation diameter estimation," Appl. Opt. 11, 939 (1972).

    [17] R. Navarro, "The optical design of the human eye: A critical review," J. Optom. 2, 3–18 (2009).

    [18] M. Kong, Z. Gao, L. Chen, X. Li, "Research and development of the optical model of human eye," Laser Technol. 32, 370–373 (2008).

    [19] J. Einighammer, T. Oltrup, T. Bende, B. Jean, "The individual virtual eye: A computer model for advanced intraocular lens calculation," J. Optom. 2, 70–82 (2009).

    [20] Y. Chen, C. Jiang, T. Yang, C. Sun, "Development of a human eye model incorporated with intraocular scattering for visual performance assessment," J. Biomed. Opt. 17, 075009 (2012).

    [21] P. Lapuerta, S. J. Schein, "A four-surface schematic eye of macaque monkey obtained by an optical method," Vision Res. 16, 2245–2254 (1995).

    [22] A. Hughes, "A schematic eye for the rabbit," Vision Res. 12, 123–138 (1972).

    [23] A. Hughes, "A schematic eye for the rat," Vision Res. 19, 569–588 (1979).

    [24] C. Schmucker, F. Schaeffel, "A paraxial schematic eye model for the growing C57BL/6 mouse," Vision Res. 44, 1857–1867 (2004).

    [25] D. C. O'Shea, Elements of Modern Optical Design, John Wiley & Sons, New York (1985).

    [26] J. Alda, Encyclopedia of Optical Engineering, World Scientific Publishing, New York (2003).

    [27] H. X. Chen, Z. F. Yang, J. R. Wang, P. Chen, H. W. Qian, "A comparative study on ocular damage induced by 1319 nm laser radiation," Laser in Surgery and Medicine 43, 306–316 (2011).

    [28] J. P. Tache, "Derivation of ABCD law for Laguerre– Gaussian beams," Appl. Opt. 26, 2698–2700 (1987).

    [29] R. Gase, "The multimode laser radiation as a Gaussian shell model beam," J. Mod. Opt. 38(6), 1107–1115 (1991).

    [30] M. S. Almeida, L. A. Carvalho, "Different schematic eyes and their accuracy to the in vivo eye: A quantitative comparison study," Brazilian J. Phys. 37, 378–387 (2007).

    [31] R. J. Thomas, R. L. Vincelette, C. D. Clark III, J. Stolarski, L. J. Irvin, G. D. Buffington, "Propagation effects in the assessment of laser damage thresholds to the eye and skin," Proc. SPIE 6435, 64350A (2007).

    [32] D. J. Lund, P. Edsall, B. E. Stuck, "Spectral dependence of retinal thermal injury," Proc. SPIE 3902, 22–34 (2000).

    [33] U. Grabner, G. Vees, K. Schulmeister, "Beam propagation hazard calculations for telescopic viewing of laser beams," Proc. ILSC 116–125 (2003).

    [34] D. J. Lund, P. Edsall, "Action spectrum for retinal thermal injury," Proc. SPIE 3591, 324–334 (1999).

    [35] K. Schulmeister, S. Althaus, U. Grabner, G. Vee, "Beam propagation model for hazard evaluation of Gaussian laser beams," NIR, pp. 793–802 (2004).

    [36] B. A. Rockwell, D. Hammer, P. K. Kennedy, R. Amnotte, B. Eilert, J. Druessel, D. Payne, S. Phillips, D. J. Stolarski, G. D. Noojin, R. Thomas, C. P. Cain, "Retinal spot size with wavelength," Proc. SPIE 2975, 148–154 (1997).

    [37] D. J. Lund, P. Edsall, B. Stuck, "Wavelength dependence of laser-induced retinal injury," Proc. SPIE 5688, 383–393 (2005).

    [38] R. L. Vincelett, A. J. Welch, R. J. Thomas, B. A. Rockwell, D. J. Lund, "Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: The 1150–1350 nm region," J. Biomed. Opt. 13, 054005-1–054005-10 (2008).

    Jia-Rui Wang, Guang-Yuan Yu, Zai-Fu Yang, Lu-Guang Jiao, Hong-Xia Chen, Xian-Biao Zou. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1350070
    Download Citation