• Advanced Photonics
  • Vol. 2, Issue 2, 024002 (2020)
Kang Lin1、†, Ilia Tutunnikov2, Junyang Ma1、3, Junjie Qiang1, Lianrong Zhou1, Olivier Faucher3、*, Yehiam Prior1、2、*, Ilya Sh. Averbukh2、*, and Jian Wu1、4、*
Author Affiliations
  • 1East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Weizmann Institute of Science, Department of Chemical and Biological Physics, Rehovot, Israel
  • 3Université de Bourgogne Franche-Comté, Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS, Dijon, France
  • 4Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, Shanxi, China
  • show less
    DOI: 10.1117/1.AP.2.2.024002 Cite this Article Set citation alerts
    Kang Lin, Ilia Tutunnikov, Junyang Ma, Junjie Qiang, Lianrong Zhou, Olivier Faucher, Yehiam Prior, Ilya Sh. Averbukh, Jian Wu. Spatiotemporal rotational dynamics of laser-driven molecules[J]. Advanced Photonics, 2020, 2(2): 024002 Copy Citation Text show less
    References

    [1] H. Stapelfeldt, T. Seideman. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys., 75, 543-557(2003).

    [2] Y. Ohshima, H. Hasegawa. Coherent rotational excitation by intense nonresonant laser fields. Int. Rev. Phys. Chem., 29, 619-663(2010).

    [3] S. Fleischer et al. Molecular alignment induced by ultrashort laser pulses and its impact on molecular motion. Isr. J. Chem., 52, 414-437(2012).

    [4] M. Lemeshko et al. Manipulation of molecules with electromagnetic fields. Mol. Phys., 111, 1648-1682(2013).

    [5] C. P. Koch, M. Lemeshko, D. Sugny. Quantum control of molecular rotation. Rev. Mod. Phys., 91, 035005(2019).

    [6] J. Itatani et al. Tomographic imaging of molecular orbitals. Nature, 432, 867-871(2004).

    [7] T. Kanai, S. Minemoto, H. Sakai. Quantum interference during high-order harmonic generation from aligned molecules. Nature, 435, 470-474(2005).

    [8] R. Torres et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett., 98, 203007(2007).

    [9] B. K. McFarland et al. High harmonic generation from multiple orbitals in N2. Science, 322, 1232-1235(2008). https://doi.org/10.1126/science.1162780

    [10] C. Vozzi et al. Generalized molecular orbital tomography. Nat. Phys., 7, 822-826(2011).

    [11] C. Z. Bisgaard et al. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science, 323, 1464-1468(2009). https://doi.org/10.1126/science.1169183

    [12] C. J. Hensley, J. Yang, M. Centurion. Imaging of isolated molecules with ultrafast electron pulses. Phys. Rev. Lett., 109, 133202(2012).

    [13] L. Christensen et al. Dynamic Stark control of torsional motion by a pair of laser pulses. Phys. Rev. Lett., 113, 073005(2014).

    [14] J. Küpper et al. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett., 112, 083002(2014).

    [15] P. M. Kraus et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science, 350, 790-795(2015).

    [16] J. Yang, M. Centurion. Gas-phase electron diffraction from laser-aligned molecules. J. Struct. Chem., 26, 1513-1520(2015).

    [17] J. Yang et al. Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction. Nat. Commun., 6, 8172(2015).

    [18] B. Wolter et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science, 354, 308-312(2016).

    [19] J. Yang et al. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses. Nat. Commun., 7, 11232(2016).

    [20] J. Wu et al. Ultrafast optical imaging by molecular wakes. Appl. Phys. Lett., 97, 161106(2010).

    [21] R. N. Zare. Laser control of chemical reactions. Science, 279, 1875-1879(1998).

    [22] J. J. Larsen, I. Wendt-Larsen, H. Stapelfeldt. Controlling the branching ratio of photodissociation using aligned molecules. Phys. Rev. Lett., 83, 1123-1126(1999).

    [23] H. Cai et al. Elongation of femtosecond filament by molecular alignment in air. Opt. Express, 17, 21060-21065(2009).

    [24] P. Lu et al. Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement. Appl. Phys. Lett., 97, 061101(2010).

    [25] B. Friedrich, D. Herschbach. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett., 74, 4623-4626(1995).

    [26] T. Seideman. Rotational excitation and molecular alignment in intense laser fields. J. Chem. Phys., 103, 7887-7896(1995).

    [27] H. Sakai et al. Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys., 110, 10235-10238(1999).

    [28] J. G. Underwood et al. Switched wave packets: a route to nonperturbative quantum control. Phys. Rev. Lett., 90, 223001(2003).

    [29] I. S. Averbukh, N. F. Perelman. Fractional revivals: universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Phys. Lett. A, 139, 449-453(1989).

    [30] J. Ortigoso et al. Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field. J. Chem. Phys., 110, 3870-3875(1999).

    [31] T. Seideman. Revival structure of aligned rotational wave packets. Phys. Rev. Lett., 83, 4971-4974(1999).

    [32] F. Rosca-Pruna, M. J. J. Vrakking. Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett., 87, 153902(2001). https://doi.org/10.1103/PhysRevLett.87.153902

    [33] R. W. Robinett. Quantum wave packet revivals. Phys. Rep., 392, 1-119(2004).

    [34] J. Floß, I. S. Averbukh. Anderson wall and Bloch oscillations in molecular rotation. Phys. Rev. Lett., 113, 043002(2014).

    [35] J. Floß et al. Observation of Bloch oscillations in molecular rotation. Phys. Rev. Lett., 115, 203002(2015).

    [36] G. Karras et al. Orientation and alignment echoes. Phys. Rev. Lett., 114, 153601(2015).

    [37] K. Lin et al. Echoes in space and time. Phys. Rev. X, 6, 041056(2016).

    [38] G. Karras et al. Experimental observation of fractional echoes. Phys. Rev. A, 94, 033404(2016).

    [39] I. S. Averbukh, R. Arvieu. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor. Phys. Rev. Lett., 87, 163601(2001).

    [40] M. Leibscher, I. S. Averbukh, H. Rabitz. Molecular alignment by trains of short laser pulses. Phys. Rev. Lett., 90, 213001(2003).

    [41] J. J. Larsen et al. Three dimensional alignment of molecules using elliptically polarized laser fields. Phys. Rev. Lett., 85, 2470-2473(2000).

    [42] K. F. Lee et al. Field-free three-dimensional alignment of polyatomic molecules. Phys. Rev. Lett., 97, 173001(2006).

    [43] X. Ren, V. Makhija, V. Kumarappan. Multipulse three-dimensional alignment of asymmetric top molecules. Phys. Rev. Lett., 112, 173602(2014).

    [44] M. J. J. Vrakking, S. Stolte. Coherent control of molecular orientation. Chem. Phys. Lett., 271, 209-215(1997).

    [45] C. M. Dion et al. Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN. Chem. Phys. Lett., 302, 215-223(1999).

    [46] T. Kanai, H. Sakai. Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields. J. Chem. Phys., 115, 5492-5497(2001).

    [47] N. Takemoto, K. Yamanouchi. Fixing chiral molecules in space by intense two-color phase-locked laser fields. Chem. Phys. Lett., 451, 1-7(2008).

    [48] S. De et al. Field-free orientation of CO molecules by femtosecond two-color laser fields. Phys. Rev. Lett., 103, 153002(2009).

    [49] K. Oda et al. All-optical molecular orientation. Phys. Rev. Lett., 104, 213901(2010).

    [50] J. Wu, H. Zeng. Field-free molecular orientation control by two ultrashort dual-color laser pulses. Phys. Rev. A, 81, 053401(2010).

    [51] E. Frumker et al. Oriented rotational wave-packet dynamics studies via high harmonic generation. Phys. Rev. Lett., 109, 113901(2012).

    [52] M. Spanner et al. Mechanisms of two-color laser-induced field-free molecular orientation. Phys. Rev. Lett., 109, 113001(2012).

    [53] S. Fleischer et al. Controlling the sense of molecular rotation. New J. Phys., 11, 105039(2009).

    [54] K. Kitano, H. Hasegawa, Y. Ohshima. Ultrafast angular momentum orientation by linearly polarized laser fields. Phys. Rev. Lett., 103, 223002(2009).

    [55] Y. Khodorkovsky et al. Controlling the sense of molecular rotation: classical versus quantum analysis. Phys. Rev. A, 83, 023423(2011).

    [56] S. Zhdanovich et al. Control of molecular rotation with a chiral train of ultrashort pulses. Phys. Rev. Lett., 107, 243004(2011).

    [57] C. Bloomquist et al. Directional spinning of molecules with sequences of femtosecond pulses. Phys. Rev. A, 86, 063413(2012).

    [58] G. Karras et al. Polarization shaping for unidirectional rotational motion of molecules. Phys. Rev. Lett., 114, 103001(2015).

    [59] E. Prost et al. Third-order-harmonic generation in coherently spinning molecules. Phys. Rev. A, 96, 043418(2017).

    [60] J. Karczmarek et al. Optical centrifuge for molecules. Phys. Rev. Lett., 82, 3420-3423(1999).

    [61] D. M. Villeneuve et al. Forced molecular rotation in an optical centrifuge. Phys. Rev. Lett., 85, 542-545(2000).

    [62] L. Yuan et al. Dynamics of molecules in extreme rotational states. Proc. Natl. Acad. Sci. U. S. A., 108, 6872-6877(2011).

    [63] A. Korobenko, A. A. Milner, V. Milner. Direct observation, study, and control of molecular superrotors. Phys. Rev. Lett., 112, 113004(2014).

    [64] A. Korobenko. Control of molecular rotation with an optical centrifuge. J. Phys. B, 51, 203001(2018).

    [65] A. Yachmenev, S. N. Yurchenko. Detecting chirality in molecules by linearly polarized laser fields. Phys. Rev. Lett., 117, 033001(2016).

    [66] E. Gershnabel, I. S. Averbukh. Orienting asymmetric molecules by laser fields with twisted polarization. Phys. Rev. Lett., 120, 083204(2018).

    [67] I. Tutunnikov et al. Selective orientation of chiral molecules by laser fields with twisted polarization. J. Phys. Chem. Lett., 9, 1105-1111(2018).

    [68] A. A. Milner et al. Controlled enantioselective orientation of chiral molecules with an optical centrifuge. Phys. Rev. Lett., 122, 223201(2019).

    [69] D. Pentlehner et al. Impulsive laser induced alignment of molecules dissolved in helium nanodroplets. Phys. Rev. Lett., 110, 093002(2013).

    [70] B. Shepperson et al. Laser-induced rotation of iodine molecules in helium nanodroplets: revivals and breaking free. Phys. Rev. Lett., 118, 203203(2017).

    [71] A. S. Chatterley et al. Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat. Commun., 10, 133(2019).

    [72] B. Shepperson et al. Strongly aligned molecules inside helium droplets in the near-adiabatic regime. J. Chem. Phys, 147, 013946(2017).

    [73] J. D. Pickering et al. Alignment and imaging of the CS2 dimer inside helium nanodroplets. Phys. Rev. Lett., 120, 113202(2018). https://doi.org/10.1103/PhysRevLett.120.113202

    [74] C. Schouder et al. Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization. Struct. Dyn., 6, 044301(2019).

    [75] R. Schmidt, M. Lemeshko. Rotation of quantum impurities in the presence of a many-body environment. Phys. Rev. Lett., 114, 203001(2015).

    [76] I. N. Cherepanov et al. Far-from-equilibrium dynamics of angular momentum in a quantum many-particle system(2019).

    [77] L. D. Landau, E. M. Lifshitz. Mechanics(1976).

    [78] R. Zare. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics(1988).

    [79] J. Floß, I. S. Averbukh. Molecular spinning by a chiral train of short laser pulses. Phys. Rev. A, 86, 063414(2012).

    [80] O. Korech et al. Observing molecular spinning via the rotational Doppler effect. Nat. Photonics, 7, 711(2013).

    [81] K. Lin et al. Visualizing molecular unidirectional rotation. Phys. Rev. A, 92, 013410(2015).

    [82] K. Mizuse et al. Quantum unidirectional rotation directly imaged with molecules. Sci. Adv., 1, e1400185(2015).

    [83] K. Mizuse, R. Fujimoto, Y. Ohshima. Acceleration and deceleration of unidirectional molecular rotation by a femtosecond laser pulse. Chem. Lett., 48, 1371-1374(2019).

    [84] Y. Kida, S. Zaitsu, T. Imasaka. Stimulated rotational Raman scattering by a polarization-modulated femtosecond pulse. Phys. Rev. A, 77, 063802(2008).

    [85] Y. Kida, S. Zaitsu, T. Imasaka. Coherent molecular rotations induced by a femtosecond pulse consisting of two orthogonally polarized pulses. Phys. Rev. A, 80, 021805(2009).

    [86] A. A. Milner et al. From gyroscopic to thermal motion: a crossover in the dynamics of molecular superrotors. Phys. Rev. X, 5, 031041(2015).

    [87] Y. Khodorkovsky et al. Collisional dynamics in a gas of molecular super-rotors. Nat. Commun., 6, 7791(2015).

    [88] A. A. Milner et al. Magneto-optical properties of paramagnetic superrotors. Phys. Rev. Lett., 115, 033005(2015).

    [89] A. A. Milner, A. Korobenko, V. Milner. Ultrafast magnetization of a dense molecular gas with an optical centrifuge. Phys. Rev. Lett., 118, 243201(2017).

    [90] U. Steinitz, Y. Prior, I. S. Averbukh. Laser-induced gas vortices. Phys. Rev. Lett., 109, 033001(2012).

    [91] A. A. Milner, A. Korobenko, V. Milner. Field-free long-lived alignment of molecules with a two-dimensional optical centrifuge. Phys. Rev. A, 93, 053408(2016).

    [92] T. Armon, L. Friedland. Capture into resonance and phase-space dynamics in an optical centrifuge. Phys. Rev. A, 93, 043406(2016).

    [93] T. Armon, L. Friedland. Quantum versus classical dynamics in the optical centrifuge. Phys. Rev. A, 96, 033411(2017).

    [94] J. J. Omiste. Theoretical study of asymmetric super-rotors: alignment and orientation. Phys. Rev. A, 97, 023407(2018).

    [95] B. A. Garetz, S. Arnold. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun., 31, 1-3(1979).

    [96] I. Bialynicki-Birula, Z. Bialynicka-Birula. Rotational frequency shift. Phys. Rev. Lett., 78, 2539-2542(1997).

    [97] N. Ashby. Relativity in the global positioning system. Living Rev. Relativ., 6, 1(2003).

    [98] D. Andrews, I. Bialynicka-Birula, Z. Bialynicki-Birula, M. Babiker. Dynamical rotational frequency shift. The Angular Momentum of Light, 162-173(2012).

    [99] G. Li, T. Zentgraf, S. Zhang. Rotational Doppler effect in nonlinear optics. Nat. Phys., 12, 736-740(2016).

    [100] R. Dörner et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep., 330, 95-192(2000).

    [101] J. Ullrich et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys., 66, 1463-1545(2003).

    [102] A. T. J. B. Eppink, D. H. Parker. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum., 68, 3477-3484(1997).

    [103] K. Mizuse et al. Direct imaging of laser-driven ultrafast molecular rotation. JoVE, e54917(2017).

    [104] E. T. Karamatskos et al. Molecular movie of ultrafast coherent rotational dynamics of OCS. Nat. Commun., 10, 3364(2019).

    [105] A. Korobenko, J. W. Hepburn, V. Milner. Observation of nondispersing classical-like molecular rotation. Phys. Chem. Chem. Phys., 17, 951-956(2015).

    [106] B. Friedrich, D. Herschbach. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces. J. Chem. Phys, 111, 6157-6160(1999).

    [107] H. Sakai et al. Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields. Phys. Rev. Lett., 90, 083001(2003).

    [108] O. Ghafur et al. Impulsive orientation and alignment of quantum-state-selected NO molecules. Nat. Phys., 5, 289-293(2009).

    [109] L. Holmegaard et al. Laser-induced alignment and orientation of quantum-state-selected large molecules. Phys. Rev. Lett., 102, 023001(2009).

    [110] A. Goban, S. Minemoto, H. Sakai. Laser-field-free molecular orientation. Phys. Rev. Lett., 101, 013001(2008).

    [111] H. Harde, S. Keiding, D. Grischkowsky. THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay. Phys. Rev. Lett., 66, 1834-1837(1991).

    [112] M. Machholm, N. E. Henriksen. Field-free orientation of molecules. Phys. Rev. Lett., 87, 193001(2001).

    [113] S. Fleischer et al. Molecular orientation and alignment by intense single-cycle THz pulses. Phys. Rev. Lett., 107, 163603(2011).

    [114] K. Kitano et al. Orientation of jet-cooled polar molecules with an intense single-cycle THz pulse. Phys. Rev. A, 88, 061405(2013).

    [115] P. Babilotte et al. Observation of the field-free orientation of a symmetric-top molecule by terahertz laser pulses at high temperature. Phys. Rev. A, 94, 043403(2016).

    [116] D. Daems et al. Efficient and long-lived field-free orientation of molecules by a single hybrid short pulse. Phys. Rev. Lett., 94, 153003(2005).

    [117] E. Gershnabel, I. S. Averbukh, R. J. Gordon. Orientation of molecules via laser-induced antialignment. Phys. Rev. A, 73, 061401(2006).

    [118] K. N. Egodapitiya, S. Li, R. R. Jones. Terahertz-induced field-free orientation of rotationally excited molecules. Phys. Rev. Lett., 112, 103002(2014).

    [119] R. Damari, S. Kallush, S. Fleischer. Rotational control of asymmetric molecules: dipole- versus polarizability-driven rotational dynamics. Phys. Rev. Lett., 117, 103001(2016).

    [120] F. A. Cotton. Chemical Applications of Group Theory(1990).

    [121] H. Goldstein. Classical Mechanics(2002).

    [122] I. Tutunnikov et al. Observation of persistent orientation of chiral molecules by laser field with twisted polarization. Phys. Rev. A, 101, 021403(R)(2020).

    [123] A. D. Buckingham, B. J. Orr. Molecular hyperpolarisabilities. Q. Rev. Chem. Soc., 21, 195-212(1967).

    [124] G. H. Wagniére. On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image(2008).

    [125] E. Francotte, W. Lindner. Chirality in Drug Research(2006).

    [126] K. Bodenhöfer et al. Chiral discrimination using piezoelectric and optical gas sensors. Nature, 387, 577-580(1997).

    [127] R. McKendry et al. Chiral discrimination by chemical force microscopy. Nature, 391, 566-568(1998).

    [128] G. L. J. A. Rikken, E. Raupach. Enantioselective magnetochiral photochemistry. Nature, 405, 932-935(2000).

    [129] H. Zepik et al. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science, 295, 1266-1269(2002).

    [130] P. Král et al. Two-step enantio-selective optical switch. Phys. Rev. Lett., 90, 033001(2003).

    [131] Y. Li, C. Bruder. Dynamic method to distinguish between left- and right-handed chiral molecules. Phys. Rev. A, 77, 015403(2008).

    [132] Y. He et al. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl. Spectrosc., 65, 699-723(2011).

    [133] M. Pitzer et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science, 341, 1096-1100(2013).

    [134] D. Patterson, M. Schnell, J. M. Doyle. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature, 497, 475(2013).

    [135] P. Herwig et al. Imaging the absolute configuration of a chiral epoxide in the gas phase. Science, 342, 1084-1086(2013).

    [136] M. H. M. Janssen, I. Powis. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys., 16, 856-871(2014).

    [137] D. Patterson, M. Schnell. New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess. Phys. Chem. Chem. Phys., 16, 11114-11123(2014).

    [138] N. Böwering et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett., 86, 1187-1190(2001).

    [139] C. Lux et al. Photoelectron circular dichroism observed in the above-threshold ionization signal from chiral molecules with femtosecond laser pulses. J. Phys. B, 49, 02LT01(2015).

    [140] L. Christensen et al. Using laser-induced Coulomb explosion of aligned chiral molecules to determine their absolute configuration. Phys. Rev. A, 92, 033411(2015).

    [141] J. D. Pickering et al. Communication: three-fold covariance imaging of laser-induced Coulomb explosions. J. Chem. Phys., 144, 161105(2016).

    [142] M. Pitzer. How to determine the handedness of single molecules using Coulomb explosion imaging. J. Phys. B, 50, 153001(2017).

    [143] D. Patterson, J. M. Doyle. Sensitive chiral analysis via microwave three-wave mixing. Phys. Rev. Lett., 111, 023008(2013).

    [144] V. A. Shubert, D. Schmitz, M. Schnell. Enantiomer-sensitive spectroscopy and mixture analysis of chiral molecules containing two stereogenic centers-microwave three-wave mixing of menthone. J. Mol. Spectrosc., 300, 31-36(2014).

    [145] I. Tutunnikov et al. Laser-induced persistent orientation of chiral molecules. Phys. Rev. A, 100, 043406(2019).

    [146] K. Lin et al. All-optical field-free three-dimensional orientation of asymmetric-top molecules. Nat. Commun., 9, 5134(2018).

    [147] J. H. Mun et al. Laser-field-free orientation of state-selected asymmetric top molecules. Phys. Rev. A, 89, 051402(2014).

    [148] D. Takei et al. Laser-field-free three-dimensional molecular orientation. Phys. Rev. A, 94, 013401(2016).

    [149] H. Li et al. Field-free molecular orientation by femtosecond dual-color and single-cycle THz fields. Phys. Rev. A, 88, 013424(2013).

    [150] C. Chen, J. Wu, H. Zeng. Nonadiabatic molecular orientation by polarization-gated ultrashort laser pulses. Phys. Rev. A, 82, 033409(2010).

    [151] H. Nakabayashi, W. Komatsubara, H. Sakai. Recipe for preparing a molecular ensemble with macroscopic threefold symmetry. Phys. Rev. A, 99, 043420(2019).

    [152] W. Zhang et al. Visualizing and steering dissociative frustrated double ionization of hydrogen molecules. Phys. Rev. Lett., 119, 253202(2017).

    [153] J. H. Mun, H. Sakai, R. González-Férez. Orientation of linear molecules in two-color laser fields with perpendicularly crossed polarizations. Phys. Rev. A, 99, 053424(2019).

    [154] G. Maroulis. The electric hyperpolarizability of ozone and sulfur dioxide. Chem. Phys. Lett., 189, 112-118(1992).

    [155] E. L. Hahn. Spin echoes. Phys. Rev., 80, 580-594(1950).

    [156] N. A. Kurnit, I. D. Abella, S. R. Hartmann. Observation of a photon echo. Phys. Rev. Lett., 13, 567-568(1964).

    [157] R. M. Hill, D. E. Kaplan. Cyclotron resonance echo. Phys. Rev. Lett., 14, 1062-1063(1965).

    [158] R. W. Gould, T. M. O’Neil, J. H. Malmberg. Plasma wave echo. Phys. Rev. Lett., 19, 219-222(1967).

    [159] A. Bulatov et al. Echo in optical lattices: stimulated revival of breathing oscillations. Phys. Rev. A, 57, 3788-3792(1998).

    [160] M. Herrera et al. Echoes and revival echoes in systems of anharmonically confined atoms. Phys. Rev. A, 86, 023613(2012).

    [161] T. Meunier et al. Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. Phys. Rev. Lett., 94, 010401(2005).

    [162] G. V. Stupakov. Echo effect in Hadron colliders(1992).

    [163] G. Stupakov, S. Kauffmann. Echo effect in accelerators(1992).

    [164] L. K. Spentzouris, J.-F. Ostiguy, P. L. Colestock. Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. Phys. Rev. Lett., 76, 620-623(1996).

    [165] G. V. Stupakov. Handbook of Accelerator Physics and Engineering, 121-123(2013).

    [166] T. Chen et al. Echo behavior in large populations of chemical oscillators. Phys. Rev. X, 6, 041054(2016).

    [167] E. L. Hahn. Free nuclear induction. Phys. Today, 6, 4-9(1953).

    [168] D. Rosenberg, R. Damari, S. Fleischer. Echo spectroscopy in multilevel quantum-mechanical rotors. Phys. Rev. Lett., 121, 234101(2018).

    [169] D. Rosenberg et al. Rotational echoes: rephasing of centrifugal distortion in laser-induced molecular alignment. J. Phys. Chem. Lett., 8, 5128-5135(2017).

    [170] O. Faucher, K. Yamanouchi, D. Charalambidis, D. Normand et al. Optically probed laser-induced field-free molecular alignment. Progress in Ultrafast Intense Laser Science VII, 79-108(2011).

    [171] K. Lin et al. Rotated echoes of molecular alignment: fractional, high order and imaginary. Opt. Express, 25, 24917-24926(2017).

    [172] J.-M. Hartmann et al. Dissipation of alignment in CO2 gas: a comparison between ab initio predictions and experiments. J. Chem. Phys., 139, 024306(2013). https://doi.org/10.1063/1.4812770

    [173] T. Vieillard et al. Field-free molecular alignment for probing collisional relaxation dynamics. Phys. Rev. A, 87, 023409(2013).

    [174] H. Zhang et al. Rotational echoes as a tool for investigating ultrafast collisional dynamics of molecules. Phys. Rev. Lett., 122, 193401(2019).

    [175] J. Ma et al. Observing collisions beyond the secular approximation limit. Nat. Commun., 10, 5780(2019).

    [176] A. S. Chatterley, B. Shepperson, H. Stapelfeldt. Three-dimensional molecular alignment inside helium nanodroplets. Phys. Rev. Lett., 119, 073202(2017).

    CLP Journals

    [1] Xuanke Zeng, Shuiqin Zheng, Yi Cai, Qinggang Lin, Jinyang Liang, Xiaowei Lu, Jingzhen Li, Weixin Xie, Shixiang Xu. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2020, 2(5): 056002

    [2] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    [3] Jian Chen, Chenhao Wan, Qiwen Zhan. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 2021, 3(6): 064001

    Kang Lin, Ilia Tutunnikov, Junyang Ma, Junjie Qiang, Lianrong Zhou, Olivier Faucher, Yehiam Prior, Ilya Sh. Averbukh, Jian Wu. Spatiotemporal rotational dynamics of laser-driven molecules[J]. Advanced Photonics, 2020, 2(2): 024002
    Download Citation