• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180534 (2019)
Liu Xuejun1、2、*, Wu Jiajun1、3, Qiao Hongchao1、3, Zhao Jibin1、3, Li Changyun2, Zhang Yinuo1、3, and Wan Lanjun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180534 Cite this Article
    Liu Xuejun, Wu Jiajun, Qiao Hongchao, Zhao Jibin, Li Changyun, Zhang Yinuo, Wan Lanjun. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534 Copy Citation Text show less
    References

    [1] Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690.

    [2] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-roduced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775–784.

    [3] Li S X, Qiao H C, Zhao J B, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569–576.

    [4] Zhang G X, Wu J J, Gao Y, et al. Experimental study on laser shock peening of TC17 titanium alloy[J]. Surface Technology, 2018, 47(3): 96–100.

    [5] Li Y H. Theory and Technology of Laser Shock Processing[M]. Beijing: Science Press of China, 2013.

    [6] Zhang Y K. The key issue and application prospect of laser shock processing industrialization[J]. Laser & Optoelectronics Progress, 2007, 44(3): 74–77.

    [7] Wu J J, Zhao J B, Qiao H C, et al. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016.

    [8] Ma Z X, Guo X W. Methods of monitoring laser shock peening for aviation engine blade[J]. Nondestructive Testing, 2015, 37(10): 81–86.

    [9] Takata T, Enoki M, Chivavibul P, et al. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave[J]. Materials Transactions, 2016, 57(5): 674–680.

    [10] Li W L, Yu L, Wang X G. Test of residual stress by hole drilling strain method[J]. Wisco Technology, 2013, 51(6): 55–59.

    [11] Chen H N, Tang Y D. Fem analysis of stress-strain for measuring residual stresses with blind-hole method[J]. Journal of Mechanical Strength, 1993, 15(3): 21–24.

    [12] Zhang D Q. Basic knowledge of stress determination by x-ray—lecture No.1 basic concept of residual stress[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(4): 211–213.

    [13] Zhang D Q. Basic knowledge of residual stress determination-lecture No. 2 basic concept of stress determination by X-ray[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(5): 263–265.

    [14] Yang J F, Zhou J Z, Feng A X. Non-destructive detection of the effect of laser shock processing[J]. Machine Tool & Hydraulics, 2007, 35(5): 160–162.

    [15] Zou S K, Cao Z W, Yang H L. Natural frequency test of turbine blades in laser shock processing[J]. China Mechanical Engineering, 2010, 21(6): 648–651.

    [16] Zhao R, Xu R Q, Shen Z H, et al. Dynamics of laser-induced shock wave by optical probe in air[J]. Optik, 2006, 117(7): 299–302.

    [17] Aguilera J A, Aragón C. Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: observation of strong explosion self-similar behavior[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 86–93.

    [18] Bian B M, Chen J P, Yang L, et al. The transmission characteristic of airborne laser plasma shock Wave[J]. Acta Physica Sinica, 2000, 49(3): 445–448.

    [19] Bian B M, Yang L, Chen X, et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica, 2002, 51(4): 809–813.

    [20] Michael D B, David M R, Won S U, et al. Real time laser shock peening quality assurance by natural frequency analysis: 6914215[P]. 2005-07-05.

    [21] Liang J M, Yang H L, Zou S K. The processing monitor for aero-engine blades' laser shock processing[J]. New Technology & New Process, 2008(2): 82–84.

    [22] Yang H L, Liang J M. Research on the quality inspection for blades’ laser shock processing[J]. Journal of Tianjin Institute of Urban Construction, 2010, 16(1): 37–40.

    [23] Wu B, Wang S B, Guo D H, et al. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352–1356.

    [24] Wang F. Experimental studies on quality assurance of laser shock processing by the amplitude and time-of-flight of the shock wave in air[D]. Zhenjiang: Jiangsu University, 2010.

    [25] Qiu C L, Cheng L, He W F. A condition monitoring method for laser peening based on the correlation between the adjacent aata[J]. Journal of Vibration and Shock, 2017, 36(4): 139–143.

    [26] Qiao H C, Zhao J B. Design and implementation of online laser peening detection system[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071401.

    [27] Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals[J]. Nondestructive Testing, 2002, 24(2): 72–77.

    [28] Bacon D F, Konuru R, Murthy C, et al. Thin locks: featherweight synchronization for Java[J]. ACM SIGPLAN Notices, 2004, 39(4): 583–595.

    Liu Xuejun, Wu Jiajun, Qiao Hongchao, Zhao Jibin, Li Changyun, Zhang Yinuo, Wan Lanjun. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534
    Download Citation