• Laser & Optoelectronics Progress
  • Vol. 59, Issue 4, 0410010 (2022)
Guoyang Chen1、2, Xiaojun Wu1、2、*, and Tianyang Xu2
Author Affiliations
  • 1School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi , Jiangsu 214122, China
  • 2Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi , Jiangsu 214122, China
  • show less
    DOI: 10.3788/LOP202259.0410010 Cite this Article Set citation alerts
    Guoyang Chen, Xiaojun Wu, Tianyang Xu. Unsupervised Infrared Image and Visible Image Fusion Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410010 Copy Citation Text show less
    References

    [1] Piella G. A general framework for multiresolution image fusion: From pixels to regions[J]. Information Fusion, 4, 259-280(2003).

    [2] Tang C, Ling Y S, Yang H et al. Decision-level fusion tracking for infrared and visible spectra based on deep learning[J]. Laser & Optoelectronics Progress, 56, 071502(2019).

    [3] Ma J Y, Ma Y, Li C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 45, 153-178(2019).

    [4] Ben H A, He Y, Krim H et al. A multiscale approach to pixel-level image fusion[J]. Integrated Computer-Aided Engineering, 12, 135-146(2005).

    [5] Xu L, Cui G M, Zheng C P et al. Fusion method of visible and infrared images based on multi-scale decomposition and saliency region extraction[J]. Laser & Optoelectronics Progress, 54, 111003(2017).

    [6] Yang B, Li S T. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 59, 884-892(2010).

    [7] Zhang Q H, Fu Y L, Li H F et al. Dictionary learning method for joint sparse representation-based image fusion[J]. Optical Engineering, 52, 057006(2013).

    [8] Zhang T F, Zhong S C, Lian C M et al. Deep learning feature fusion-based retina image classification[J]. Laser & Optoelectronics Progress, 57, 241025(2020).

    [9] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).

    [10] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [11] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [12] Liu Y, Chen X, Peng H et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 36, 191-207(2017).

    [13] Li H, Wu X J, Kittler J. Infrared and visible image fusion using a deep learning framework[C], 2705-2710(2018).

    [14] Li H, Wu X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2019).

    [15] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Computer vision-ECCV 2014, 8693, 740-755(2014).

    [16] Zhang Y, Liu Y, Sun P et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).

    [17] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C], 4724-4732(2017).

    [18] Mustafa H T, Yang J, Zareapoor M. Multi-scale convolutional neural network for multi-focus image fusion[J]. Image and Vision Computing, 85, 26-35(2019).

    [19] Ma J Y, Yu W, Liang P W et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).

    [20] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [21] TOET. A. TNO image fusion dataset, 2014[EB/OL]. https:∥figshare.com/articles/TN_Image_Fusion_Dataset/1008029

    [22] Ma J L, Zhou Z Q, Wang B et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 82, 8-17(2017).

    [23] Kumar B K S. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform[J]. Signal, Image and Video Processing, 7, 1125-1143(2013).

    [24] Ma J Y, Chen C, Li C et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).

    [25] Liu Y, Chen X, Ward R K et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 23, 1882-1886(2016).

    [26] van Aardt J. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2, 023522(2008).

    [27] Rao Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 8, 355-375(1997).

    [28] Han Y, Cai Y Z, Cao Y et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 14, 127-135(2013).

    [29] Sulaiman M A, Labadin J. Feature selection based on mutual information[C], 1-6(2015).

    [30] Piella G, Heijmans H. A new quality metric for image fusion[C], 111-173(2003).

    [31] Aslantas V, Bendes E. A new image quality metric for image fusion: the sum of the correlations of differences[J]. AEU-International Journal of Electronics and Communications, 69, 1890-1896(2015).

    Guoyang Chen, Xiaojun Wu, Tianyang Xu. Unsupervised Infrared Image and Visible Image Fusion Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410010
    Download Citation