• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 035901 (2022)
T.-T. Qin1、*, W. Luo1, H.-Y. Lan1, and W.-M. Wang2
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices and Department of Physics, Renmin University of China, Beijing 100872, China
  • show less
    DOI: 10.1063/5.0078961 Cite this Article
    T.-T. Qin, W. Luo, H.-Y. Lan, W.-M. Wang. Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy[J]. Matter and Radiation at Extremes, 2022, 7(3): 035901 Copy Citation Text show less
    References

    [1] A.Thiessen, J.Nuckolls, L.Wood, G.Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).

    [2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [3] R.Wolf, R.Koch, J.Ongena, H.Zohm. Magnetic-confinement fusion. Nat. Phys., 12, 398-410(2016).

    [4] J.Meyer-Ter-Vehn, S.Atzeni. The Physics of Inertial Fusion(2004).

    [5] D.Strickland, G.Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447-449(1985).

    [6] D.Pesme, C.Labaune, R.Dautray, and R.Dautray, J. P.Watteau. La Fusion Thermonucleaire Inertielle par Laser(1993).

    [7] A. P.Fews, A. R.Bell, C. N.Danson, S. J.Rose, P.Lee, A. E.Dangor, P. A.Norreys, F. N.Beg. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. Phys. Rev. Lett., 73, 1801-1804(1994).

    [8] S.Gu, K.Flippo, A.Maksimchuk, D.Umstadter, V. Y.Bychenkov. Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett., 84, 4108-4111(2000).

    [9] E. A.Henry, M. H.Key, A.MacKinnon, T. W.Phillips, A.Offenberger, B. F.Lasinski, A. B.Langdon, M. A.Stoyer, K.Yasuike, S. C.Wilks, T. E.Cowan, M. S.Singh, T. C.Sangster, M.Roth, M. D.Perry, J.Johnson, D. M.Pennington, S. P.Hatchett, E. M.Campbell, R. A.Snavely. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).

    [10] C. A.Cecchetti, E.Brambrink, T.Toncian, M.Kaluza, S.Meyroneinc, V.Malka, P.Mora, E.Lefebvre, P.Audebert, M.Borghesi, J.Schreiber, P.Antici, M.Manclossi, H.Pépin, E.d’Humières, J.Fuchs. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys., 2, 48-54(2006).

    [11] V. I.Kukulin, V. T.Voronchev. Nuclear-physics aspects of controlled thermonuclear fusion: Analysis of promising fuels and gamma-ray diagnostics of hot plasma. Phys. At. Nucl., 63, 2051-2066(2000).

    [12] W. M.Nevins. A review of confinement requirements for advanced fuels. J. Fusion Energy, 17, 25-32(1998).

    [13] P.Andreoli, D.Batani, D.Giulietti et al. Laser-plasma energetic particle production for aneutronic nuclear fusion experiments. Nucl. Instrum. Methods Phys. Res., Sect. B, 402, 373-375(2017).

    [14] S.Depierreux, V.Yahia, C.Baccou et al. New scheme to produce aneutronic fusion reactions by laser-accelerated ions. Laser Part. Beams, 33, 117-122(2015).

    [15] B.Nayak. Reactivities of neutronic and aneutronic fusion fuels. Ann. Nucl. Energy, 60, 73-77(2013).

    [16] J.Gruenwald. Proposal for a novel type of small scale aneutronic fusion reactor. Plasma Phys. Controlled Fusion, 59, 025011(2016).

    [17] C.Rolfs, H. P.Trautvetter, H. W.Becker. Low-energy cross sections for 11B(p,3α). Z. Phys. A: At. Nucl., 327, 341-355(1987).

    [18] R. C.Kirkpatrick, J. A.Wheeler. The physics of DT ignition in small fusion targets. Nucl. Fusion, 21, 389-401(1981).

    [19] N.Rostoker, M. W.Binderbauer, H. J.Monkhorst. Colliding beam fusion reactor. Science, 278, 1419-1422(1997).

    [20] G. H.Miley, N.Nissim, S.Eliezer, H.Hora. Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion. High Energy Density Phys., 35, 100739(2020).

    [21] V. A.Smalyuk, D. P.McNabb, J. A.Caggiano, N.Izumi, L. R.Benedetti, B. A.Remington, L. B.Hopkins, J. E.Pino, C. R.Brune, D. B.Sayre, L.Divol, S.LePape, J. M.McNaney, G. P.Grim, G. A.Kyrala, C. B.Yeamans, D. T.Casey, M.Gatu-Johnson, T. G.Parham, D.Dearborn, C. R.Weber, J. A.Frenje, R. E.Tipton, N. B.Meezan, T.Ma, R.Hatarik, A.Pak, J.Salmonson, M.Chiarappa-Zucca, S.MacLaren, B. K.Spears, D. M.Holunga, S. F.Khan, T. R.Kohut. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys., 13, 1227-1231(2017).

    [22] M.Cruz, L.Disdier, J. P.Knauer, M.Fox, J. D.Kilkenny, D.Munro, G. A.Chandler, T.Clancy, J.-L.Bourgade, T.Buczek, D.Schneider, T. C.Sangster, R. A.Lerche, M. J.Shoup, W.Stoeffl, K. L.Marshall, M. J.Moran, J. J.Haslam, V. Y.Glebov, D.Warwas, T.Duffy, A.Pruyne, J.McNaney, C.Stoeckl, R. J.Leeper, C. J.Horsfield, R.Zacharias, W.Theobald, M.Romanofsky, M.Yeoman, O.Landoas, M. J.Eckart. The National Ignition Facility neutron time-of-flight system and its initial performance (invited). Rev. Sci. Instrum., 81, 10D325(2010).

    [23] C. T.Angell. Enabling in situ thermometry using transmission nuclear resonance fluorescence. Nucl. Instrum. Methods Phys. Res., Sect. B, 368, 9-14(2016).

    [24] B.Shen, Y.Yu. Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence. Phys. Plasmas, 26, 062708(2019).

    [25] G.Korn, A.Picciotto, J.-M.Martinez-Val, S.Moustaizis, N.Nissim, G. J.Kirchhoff, P.Lalousis, S.Eliezer, L.Giuffrida, G. H.Miley, H.Hora, C. P. J.Barty, D.Margarone. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor. High Power Laser Sci. Eng., 4, e35(2016).

    [26] A.Zilges, K.Vogt, T.Hartmann, P.Mohr, S.Volz. Electric dipole strength below the giant dipole resonance. AIP Conf. Proc., 610, 870-874(2002).

    [27] Z. M.Dong, C. L.Liang, X. Z.Li. Studies on p+6Li fusion reaction using 3-parameter model. J. Fusion Energy, 31, 432-436(2012).

    [28] H.Hora, B.Malekynia, G. H.Miley, A.Salar Elahi, Z.Abdollahi, M.Ghoranneviss. Laser fusion energy from p-7Li with minimized radioactivity. Laser Part. Beams, 30, 459-463(2012).

    [29] T. R.Ophel, Y.Eisen, B.Zeidman, W.Henning, P.Sperr, M.Paul, T. H.Braid, S.Vigdor, D. F.Geesaman, D. G.Kovar, F. W.Prosser, S. L.Tabor, K. E.Rehm, S. J.Sanders, J. P.Schiffer. Systematics of carbon- and oxygen-induced fusion on nuclei with 12 A 19. Phys. Rev. C, 20, 1305(1979).

    [30] R. S.Kemp, A.Danagoulian, J. R.Vavrek, R. R.Macdonald. Physical cryptographic verification of nuclear warheads. Proc. Natl. Acad. Sci. U. S. A., 113, 8618-8623(2016).

    [31] J. R.Vavrek, B. S.Henderson, A.Danagoulian. Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence. Proc. Natl. Acad. Sci. U. S. A., 115, 4363-4368(2018).

    [32] D. P.McNabb, J.Pruet, C. P. J.Barty, F. V.Hartemann, C. A.Hagmann. Detecting clandestine material with nuclear resonance fluorescence. J. Appl. Phys., 99, 123102(2006).

    [33] N.Kikuzawa, T.Shizuma, T.Hayakawa, H.Ohgaki, R.Hajima, H.Toyokawa, E.Minehara, T.Kii. Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays. Rev. Sci. Instrum., 80, 045110(2009).

    [34] F. R.Metzger. Resonance fluorescence in nuclei. Prog. Nucl. Phys., 7, 54(1959).

    [35] D.Umstadter, A.Rousse, D.Hulin, A.Pukhov, J.-P.Rousseau, S.Kiselev, R.Shah, E.Lefebvre, V.Malka, K. T.Phuoc, F.Burgy. Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).

    [36] K. C.Harkay, K.Németh, J. R.Cary, H.Shang, Y.Li, R.Crowell, B.Shen. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett., 100, 095002(2008).

    [37] C.Thaury, V.Malka, A.Tafzi, K.Ta Phuoc, S.Sebban, S.Corde, R. C.Shah, A.Rousse, J. P.Goddet. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308-311(2012).

    [38] D.Haden, J.Silano, G.Golovin, B.Zhao, H.Karwowski, D.Umstadter, J.Zhang, C.Liu, S.Banerjee, S.Chen. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light. Opt. Lett., 39, 4132-4135(2014).

    [39] Y.-T.Li, J.Zhang, P.Gibbon, L.-M.Chen, W.-M.Wang, Z.-M.Sheng. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911-9916(2018).

    [40] Z. M.Sheng, P.Gibbon, Y. T.Li, W. M.Wang. Integrated simulation approach for laser-driven fast ignition. Phys. Rev. E, 91, 013101(2015).

    [41] W. M.Wang, P.Gibbon, J.Zhang, Z. M.Sheng, Y. T.Li. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects. Phys. Rev. E, 96, 013201(2017).

    [42] H.Burkhardt, L.Broglia, K.Amako, S.Banerjee, G.Barrand, R.Chytracek, S.Chauvie, M.Asai, J.Allison, J.Apostolakis, J.Chuma, A.Brunengo, L.Bellagamba, F.Behner, S.Agostinelli, J.Boudreau, P.Arce, G.Cooperman, D.Axen, H.Araujo et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [43] D. L.Balabanski, H.-y.Lan, Y.Xu, W.Luo. Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies. Nucl. Instrum. Methods Phys. Res., Sect. A, 849, 49-54(2017).

    [44] J. L.Zhou, Y.Xu, Z. C.Zhu, H. Y.Lan, W.Luo, D. L.Balabanski, S.Tan, S. Q.Zhao, X. D.Huang. Nuclear resonance fluorescence drug inspection. Sci. Rep., 11, 1306(2021).

    [45] X. Q.Li, C. G.Wu, Z. H.Li, Y.Jin, S. Q.Zhang, H. Y.Wu, D. W.Luo, X.Wang, C.Xu, H.Hua, J.Lin, Z. Q.Chen. Performance of digital data acquisition system in gamma-ray spectroscopy. Nucl. Sci. Tech., 32, 79(2021).

    [46] M. A.Bentley, G.Baulieu, P.Bednarczyk, F. A.Beck, A.Austin, F.Le Blanc, R.Beunard, D.Bazzacco, S.Akkoyun, Y.Aubert, G.Benzoni, D.Bloor, C.Aufranc, G.de Angelis, T.Beck, P. G.Bizzeti, F.Ameil, H. C.Boston, D.Barrientos, G.Lo Bianco, R.Berthier, D. L.Balabanski, M.Bellato, J. M.Blasco, B.Birkenbach, A. J.Boston, A.Astier, A. M.Bizzeti-Sona, S.Aydin, P.Bourgault, A.Algora, A.Ata?, D.Bortolato, L.Arnold, S.Badoer, B.Alikhani, L.Berti, R.Baumann, N.Blasi, F.Azaiez, M.Borsato, C.Boiano et al. AGATA—Advanced gamma tracking array. Nucl. Instrum. Methods Phys. Res., Sect. A, 668, 26-58(2012).

    [47] C.Petcu, V.Derya, J.Beller, A.Zilges, D.Savran, N.Pietralla, G.Suliman, B.Boisdeffre, C.Matei, C. A.Ur, G.Pascovici, C.Romig, E.Udup, M. O.Cernaianu, B.Loher, V.Werner. Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys., 68, S483-S538(2016).

    [48] J.-L.Zhou, Z.-C.Zhu, W.Luo, Z.-H.Luo, H.-Y.Lan, T.Song. Isotope-Sensitive Imaging of Special Nuclear Materials Using Computer Tomography Based on Scattering Nuclear Resonance Fluorescence. Phys. Rev. Applied, 16, 054048(2021).

    [49] W.Luo, J.-L.Zhou, T.Song, J.-L.Zhang, H.-Y.Lan. Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy. Nucl. Sci. Tech., 32, 84(2021).

    T.-T. Qin, W. Luo, H.-Y. Lan, W.-M. Wang. Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy[J]. Matter and Radiation at Extremes, 2022, 7(3): 035901
    Download Citation