• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207003 (2018)
Sun Kai1、*, Zhou Hua1, Yang Yingkun1, and Wu Changfeng1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207003 Cite this Article Set citation alerts
    Sun Kai, Zhou Hua, Yang Yingkun, Wu Changfeng. Research Advances in Blood Glucose Monitoring System[J]. Chinese Journal of Lasers, 2018, 45(2): 207003 Copy Citation Text show less
    References

    [1] Zimmet P. Alberti K G M M, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature, 414, 782-787(2001).

    [2] International Diabetes Federation. Diabetes Atlas[M]. 7 th ed. (2015).

    [3] Xu Y, Wang L, He J et al. Prevalence and control of diabetes in Chinese adults[J]. Journal of the American Medical Association, 310, 948-958(2013). http://www.ncbi.nlm.nih.gov/pubmed/24002281

    [4] Waldron-Lynch F, Herold K C. Continuous glucose monitoring: long live the revolution![J]. Nature Clinical Practice Endocrinology & Metabolism, 5, 82-83(2009). http://www.nature.com/nrendo/journal/v5/n2/full/ncpendmet1044.html

    [5] Tamborlane W V, Beck R W, Bode B W et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes[J]. The New England Journal of Medicine, 359, 1464-1465(2008). http://www.bmj.com/lookup/external-ref?access_num=18779236&link_type=MED&atom=%2Fbmj%2F343%2Fbmj.d3805.atom

    [6] Klonoff D C. Continuous glucose monitoring: roadmap for 21st century diabetes therapy[J]. Diabetes Care, 28, 1231-1239(2005). http://www.bmj.com/lookup/ijlink?linkType=FULL&journalCode=diacare&resid=28/5/1231&atom=%2Fbmj%2F342%2Fbmj.d1855.atom

    [7] Lieberman S M. DiLorenzo T P. A comprehensive guide to antibody and T-cell responses in type 1 diabetes[J]. Tissue Antigens, 62, 359-377(2003). http://europepmc.org/abstract/MED/14617043

    [8] Berenson D F, Weiss A R, Wan Z L et al. Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering[J]. Annals of the New York Academy of Sciences, 1243, E40-E54(2011). http://europepmc.org/articles/PMC3360579

    [9] Ismail-Beigi F. Glycemic management of type 2 diabetes mellitus[J]. The New England Journal of Medicine, 366, 1319-1327(2012).

    [10] Donath M Y, Shoelson S E. Type 2 diabetes as an inflammatory disease[J]. Nature Reviews Immunology, 11, 98-107(2011). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21233852

    [11] Marathe P H, Gao H X, Close K L. American diabetes association standards of medical care in diabetes 2017[J]. Journal of Diabetes, 9, 320-324(2017). http://onlinelibrary.wiley.com/doi/10.1111/1753-0407.12524/pdf

    [12] Pickup J C. Management of diabetes mellitus: is the pump mightier than the pen?[J]. Nature Reviews Endocrinology, 8, 425-433(2012). http://www.ncbi.nlm.nih.gov/pubmed/22371161

    [13] Brown L. 2(27): 27ps18[J]. Edelman E R. Optimal control of blood glucose: the diabetic patient or the machine?. Science Translational Medicine(2010).

    [14] Langerhans P[J]. Beitrage zur mikroskopischen anatomie der bauchspeicheldruse, inaugural disseration Gustav Lange, 1869.

    [15] Opie E L. On the histology of the islands of Langerhans of the pancreas[M]. [S.1.]:[s.n.].(1900).

    [16] Opie E L. The relation oe diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands oe langerhans[J]. The Journal of Experimental Medicine, 5, 527-540(1901). http://europepmc.org/abstract/MED/19866956

    [17] Frederick Grant Banting. 1891—1941), codiscoverer of insulin[J]. Journal of the American Medical Association, 198, 660-661(1966).

    [18] Stylianou C, Kelnar C. The introduction of successful treatment of diabetes mellitus with insulin[J]. Journal of the Royal Society of Medicine, 102, 298-303(2009). http://www.ncbi.nlm.nih.gov/pubmed/19605862

    [19] Kimball C P, Murlin J R. Aqueous extracts of pancreas III. Some precipitation reactions of insulin[J]. Journal of Biological Chemistry, 58, 337-346(1923). http://www.researchgate.net/publication/284041470_Aqueous_extracts_of_pancreas_III_Some_precipitation_reactions_of_insulin

    [20] Cabrera O, Berman D M, Kenyon N S et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function[J]. Proceedings of the National Academy of Sciences, 103, 2334-2339(2006). http://www.jstor.org/stable/30048128

    [21] El-Khatib F H, Russell S J, Nathan D Met al. A bihormonal closed-loop artificial pancreas for type 1 diabetes[J]. 2(27): 27ra27(2010).

    [22] Nichols S P, Koh A, Storm W L et al. Biocompatible materials for continuous glucose monitoring devices[J]. Chemical Reviews, 113, 2528-2549(2013). http://europepmc.org/abstract/MED/23387395

    [23] Veiseh O, Tang B C, Whitehead K A et al. Managing diabetes with nanomedicine: challenges and opportunities[J]. Nature Reviews Drug Discovery, 14, 45-57(2015). http://www.ncbi.nlm.nih.gov/pubmed/25430866

    [24] Wu Q, Wang L, Yu H J et al. Organization of glucose-responsive systems and their properties[J]. Chemical Reviews, 111, 7855-7875(2011). http://pubs.acs.org/doi/abs/10.1021/cr200027j

    [25] Scognamiglio V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years[J]. Biosensors and Bioelectronics, 47, 12-25(2013). http://europepmc.org/abstract/med/23542065

    [26] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 102, 29-45(1962). http://europepmc.org/abstract/med/14021529

    [27] Updike S J, Hicks G P. The enzyme electrode[J]. Nature, 214, 986-988(1967).

    [28] Guilbault G G, Lubrano G J. An enzyme electrode for the amperometric determination of glucose[J]. Analytica Chimica Acta, 64, 439-455(1973). http://www.ncbi.nlm.nih.gov/pubmed/4701057

    [29] Schläpfer P, Mindt W, Racine P. Electrochemical measurement of glucose using various electron acceptors[J]. Clinica Chimica Acta, 57, 283-289(1974). http://www.sciencedirect.com/science/article/pii/0009898174904082

    [30] Cass A E, Davis G, Francis G D et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose[J]. Analytical Chemistry, 56, 667-671(1984). http://pubs.acs.org/doi/abs/10.1021/ac00268a018

    [31] Frew J E, Hill H A. Electrochemical biosensors[J]. Analytical Chemistry, 59, 933A-944A(1987).

    [32] Zhang S X, Yang W W, Niu Y M et al. Multilayered construction of glucose oxidase and poly (allylamine) ferrocene on gold electrodes by means of layer-by-layer covalent attachment[J]. Sensors and Actuators B: Chemical, 101, 387-393(2004). http://www.sciencedirect.com/science/article/pii/S092540050400173X

    [33] Zhang S X, Wang N, Yu H J et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 67, 15-22(2005). http://europepmc.org/abstract/MED/15967397

    [34] Piro B, Dang L A, Pham M C et al. A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly (3, 4-ethylenedi oxythiophene)(PEDT) films[J]. Journal of Electroanalytical Chemistry, 512, 101-109(2001). http://www.sciencedirect.com/science/article/pii/S0022072801005952

    [35] Bean L S, Heng L Y, Yamin B M et al. The electrochemical behaviour of ferrocene in a photocurable poly (methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor[J]. Bioelectrochemistry, 65, 157-162(2005). http://www.ncbi.nlm.nih.gov/pubmed/15713567

    [36] Zhang S X, Yang W W, Niu Y M et al. Multilayered construction of glucose oxidase on gold electrodes based on layer-by-layer covalent attachment[J]. Analytica Chimica Acta, 523, 209-217(2004). http://www.sciencedirect.com/science/article/pii/S0003267004009407

    [37] Alonso B, Armada P G, Losada J et al. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers[J]. Biosensors and Bioelectronics, 19, 1617-1625(2004). http://europepmc.org/abstract/MED/15142595

    [38] Patel H, Li X, Karan H I. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report[J]. Biosensors and Bioelectronics, 18, 1073-1076(2003). http://europepmc.org/abstract/med/12782471

    [39] Pandey P C, Upadhyay S, Shukla N K et al. Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode[J]. Biosensors and Bioelectronics, 18, 1257-1268(2003). http://www.sciencedirect.com/science/article/pii/S0956566303000757

    [40] Delvaux M, Demoustier-Champagne S. Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors[J]. Biosensors and Bioelectronics, 18, 943-951(2003). http://www.ncbi.nlm.nih.gov/pubmed/12713918

    [41] Pan D W, Chen J H, Yao S Z et al. Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode[J]. Sensors and Actuators B: Chemical, 104, 68-74(2005). http://www.sciencedirect.com/science/article/pii/S0925400504003120

    [42] Warren S. McCormac T, Dempsey E. Investigation of novel mediators for a glucose biosensor based on metal picolinate complexes[J]. Bioelectrochemistry, 67, 23-35(2005). http://www.ncbi.nlm.nih.gov/pubmed/15967398

    [43] Bai Y, Sun Y Y, Sun C Q. Pt-Pb nanowire array electrode for enzyme-free glucose detection[J]. Biosensors and Bioelectronics, 24, 579-585(2008). http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0214502253.aspx

    [44] Kang X H, Mai Z B, Zou X Y et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes[J]. Analytical Biochemistry, 369, 71-79(2007). http://www.ncbi.nlm.nih.gov/pubmed/17678866

    [45] Wang J. Electrochemical glucose biosensors[J]. Chemical Reviews, 108, 814-825(2008).

    [46] Wilson G S, Gifford R. Biosensors for real-time in vivo measurements[J]. Biosensors and Bioelectronics, 20, 2388-2403(2005). http://www.ncbi.nlm.nih.gov/pubmed/15854814

    [47] Albisser A M, Leibel B S, Ewart T G et al. Clinical control of diabetes by the artificial pancreas[J]. Diabetes, 23, 397-404(1974). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=4598090

    [48] Shichiri M. YamasakiR, Kawamori Y, et al. Wearable artificial endocrine pancrease with needle-type glucose sensor[J]. The Lancet, 2, 1129-1131(1982).

    [49] Bindra D S, Zhang Y N, Wilson G S et al. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring[J]. Analytical Chemistry, 63, 1692-1696(1991). http://europepmc.org/abstract/MED/1789439

    [50] Wilson G S, Hu Y B. Enzyme-based biosensors for in vivo measurements[J]. Chemical Reviews, 100, 2693-2704(2000). http://europepmc.org/abstract/MED/11749301

    [51] Gough D A, Kumosa L S, Routh T Let al. Function of an implanted tissue glucose sensor for more than 1 year in animals[J]. 2(42): 42ra53(2010).

    [52] Zisser H, Lane J E, Shivers J P. Continuous glucose monitoring: professional and real time[J]. Frontiers in Diabetes, 81-98(2014). http://content.karger.com/Article/Abstract/363479

    [53] Heikenfeld J. Bioanalytical devices: technological leap for sweat sensing[J]. Nature, 529, 475-476(2016). http://www.nature.com/nature/journal/v529/n7587/abs/529475a.html

    [54] Tamada J A, Garg S, Jovanovic L et al. Noninvasive glucose monitoring: comprehensive clinical results[J]. Journal of the American Medical Association, 282, 1839-1844(1999).

    [55] Rose D P, Ratterman M E, Griffin D K et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes[J]. IEEE Transactions on Biomedical Engineering, 62, 1457-1465(2015). http://www.ncbi.nlm.nih.gov/pubmed/25398174

    [56] Bandodkar A J, Molinnus D, Mirza O et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring[J]. Biosensors and Bioelectronics, 54, 603-609(2014). http://pubs.acs.org/servlet/linkout?suffix=ref19/cit19&dbid=8&doi=10.1021%2Fac504300n&key=24333582

    [57] Coyle S, Lau K T, Moyna N et al. BIOTE: biosensing textiles for personalised healthcare management[J]. IEEE Transactions on Information Technology in Biomedicine, 14, 364-370(2010). http://europepmc.org/abstract/med/20064761

    [58] Jia W Z, Bandodkar A J. Valde's-Ramírez G, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration[J]. Analytical Chemistry, 85, 6553-6560(2013). http://pubs.acs.org/doi/pdf/10.1021/ac401573r

    [59] Schazmann B, Morris D, Slater C et al. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration[J]. Analytical Methods, 2, 342-348(2010). http://pubs.rsc.org/en/content/articlehtml/2010/ay/b9ay00184k

    [60] Lee H, Choi T K, Lee Y B et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J]. Nature Nanotechnology, 11, 566-572(2016). http://europepmc.org/abstract/MED/26999482

    [61] Gao W, Emaminejad S. Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 529, 509-514(2016). http://www.nature.com/nature/journal/v529/n7587/fig_tab/nature16521_F1.html

    [62] Du X S, Li Y J, Motley J R et al. Glucose sensing using functionalized amorphous In-Ga-Zn-O field-effect transistors[J]. ACS Applied Materials & Interfaces, 8, 7631-7637(2016). http://europepmc.org/abstract/MED/26953727

    [63] Du X S, Li Y J, Herman G S. A field effect glucose sensor with a nanostructured amorphous In-Ga-Zn-O network[J]. Nanoscale, 8, 18469-18475(2016). http://www.ncbi.nlm.nih.gov/pubmed/27778013

    [64] Steiner M S, Duerkop A, Wolfbeis O S. Optical methods for sensing glucose[J]. Chemical Society Reviews, 40, 4805-4839(2011). http://www.ncbi.nlm.nih.gov/pubmed/21674076

    [65] Ding Y, Yao Q K, Deng L J et al. Research in blood glucose noninvasive measurement based on photoacoustic technique[J]. Laser & Optoelectronics Progress, 55, 031701(2018).

    [66] Su Y, Meng Z, Wang L Z et al. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese Journal of Lasers, 41, 0704002(2014).

    [67] Wolf B. Current development in non-invasive glucose monitoring[J]. Medical Engineering & Physics, 30, 541-549(2008). http://www.ncbi.nlm.nih.gov/pubmed/17942360

    [68] Vaddiraju S, Burgess D J, Tomazos I et al. Technologies for continuous glucose monitoring: current problems and future promises[J]. Journal of Diabetes Science and Technology, 4, 1540-1562(2010). http://europepmc.org/articles/PMC3005068

    [69] Wolfbeis O S, Oehme I, Papkovskaya N et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background[J]. Biosensors and Bioelectronics, 15, 69-76(2000). http://www.sciencedirect.com/science/article/pii/S0956566399000731

    [70] Yang X F, Zhou Z D, Xiao D et al. A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane[J]. Biosensors and Bioelectronics, 21, 1613-1620(2006). http://www.ncbi.nlm.nih.gov/pubmed/16168632

    [71] Cella L N, Chen W, Myung N V et al. Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection[J]. Journal of the American Chemical Society, 132, 5024-5026(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC3292278/

    [72] Cordes D B, Gamsey S, Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution[J]. Angewandte Chemie International Edition, 45, 3829-3832(2006). http://europepmc.org/abstract/MED/16646092

    [73] Endo T, Ikeda R, Yanagida Y et al. Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor[J]. Analytica Chimica Acta, 611, 205-211(2008). http://www.ncbi.nlm.nih.gov/pubmed/18328322

    [74] Xia Y S, Ye J J, Tan K H et al. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system[J]. Analytical Chemistry, 85, 6241-6247(2013). http://europepmc.org/abstract/med/23706061

    [75] Bukowski R M, Chodavarapu V P, Titus A H et al. Phase fluorometric glucose biosensor using oxygen as transducer and enzyme-doped xerogels[J]. Electronics Letters, 43, 202-204(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4117451

    [76] Wu X J. Choi M M F. An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose[J]. Analytica Chimica Acta, 514, 219-226(2004). http://www.sciencedirect.com/science/article/pii/S0003267004003770

    [77] Li X Y, Zhou Y L, Zheng Z Z et al. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase[J]. Langmuir, 25, 6580-6586(2009). http://pubs.acs.org/doi/abs/10.1021/la900066z

    [78] Chaudhary A, Srivastava R. Glucose sensing using competitive binding assay co-encapsulated in uniform sized alginate microspheres[J]. Sensor Letters, 6, 253-260(2008). http://www.ingentaconnect.com/content/asp/senlet/2008/00000006/00000002/art00001

    [79] Brownlee M, Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin[J]. Science, 206, 1190-1191(1979). http://europepmc.org/abstract/MED/505005

    [80] Sato K, Anzai J. Fluorometric determination of sugars using fluorescein-labeled concanavalin A-glycogen conjugates[J]. Analytical and Bioanalytical Chemistry, 384, 1297-1301(2006). http://www.ncbi.nlm.nih.gov/pubmed/16477422

    [81] Cheung K Y, Mak W C, Trau D. Reusable optical bioassay platform with permeability-controlled hydrogel pads for selective saccharide detection[J]. Analytica Chimica Acta, 607, 204-210(2008). http://europepmc.org/abstract/MED/18190809

    [82] Tang B, Cao L H, Xu K et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles[J]. Chemistry-A European Journal, 14, 3637-3644(2008). http://europepmc.org/abstract/med/18318025

    [83] Ballerstadt R, Evans C, Gowda A et al. In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring[J]. Diabetes Technology & Therapeutics, 8, 296-311(2006). http://europepmc.org/abstract/MED/16800751

    [84] Liang F, Pan T S. Sevick-Muraca E M. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy[J]. Photochemistry and Photobiology, 81, 1386-1394(2005). http://europepmc.org/abstract/MED/16120004

    [85] Billingsley K, Balaconis M K, Dubach J M et al. Fluorescent nano-optodes for glucose detection[J]. Analytical Chemistry, 82, 3707-3713(2010). http://europepmc.org/articles/PMC2862111

    [86] Suenaga H, Yamamoto H, Shinkai S. Screening of boronic acids for strong inhibition of the hydrolytic activity of α-chymotrypsin and for sugar sensing associated with a large fluorescence change[J]. Pure and Applied Chemistry, 68, 2179-2186(1996). http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fpac.1996.68.issue-11$002fpac199668112179$002fpac199668112179.pdf?t:ac=j$002fpac.1996.68.issue-11$002fpac199668112179$002fpac199668112179.xml

    [87] Suenaga H, Mikami M. Sandanayake K R A S, et al. Screening of fluorescent boronic acids for sugar sensing which show a large fluorescence change[J]. Tetrahedron Letters, 36, 4825-4828(1995). http://www.sciencedirect.com/science/article/pii/004040399500904Q

    [88] Yamauchi A, Sakashita Y, Hirose K et al[J]. Pseudorotaxane-type fluorescent receptor exhibiting unique response to saccharides Chemical Communications, 2006, 4312-4314.

    [89] Kataoka K, Hisamitsu I, Sayama N et al. Novel sensing system for glucose based on the complex formation between phenylborate and fluorescent diol compounds[J]. The Journal of Biochemistry, 117, 1145-1147(1995). http://www.ncbi.nlm.nih.gov/pubmed/7490251

    [90] Shibata H, Heo Y J, Okitsu T. et al. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring[J]. Proceedings of the National Academy of Sciences, 107, 17894-17898(2010). http://www.europepmc.org/abstract/med/20921374

    [91] Wu W T, Zhou T, Berliner A et al. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing[J]. Angewandte Chemie International Edition, 49, 6554-6558(2010). http://onlinelibrary.wiley.com/doi/10.1002/anie.201001508/pdf

    [92] Guo Z Q, Park S, Yoon Juyoung. et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J]. Chemical Society Reviews, 43, 16-29(2014). http://europepmc.org/abstract/med/24052190

    [93] Iverson N M. Barone1 P W, Shandell1 M, et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes[J]. Nature Nanotechnology, 8, 873-880(2013).

    [94] Barone P W, Baik S, Heller D A. et al. Near-infrared optical sensors based on single-walled carbon nanotubes[J]. Nature Materials, 4, 86-92(2005). http://www.ncbi.nlm.nih.gov/pubmed/15592477

    [95] Lukinavicius G, Umezawa K, Olivier N. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nature Chemistry, 5, 132-139(2013). http://www.ncbi.nlm.nih.gov/pubmed/23344448

    [96] Choi H S, Gibbs S L, Lee J H. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J]. Nature Biotechnology, 31, 148-154(2013). http://www.nature.com/nbt/journal/v31/n2/nbt.2468/metrics

    [97] Amerov A K, Chen J, Small G W. et al. Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy[J]. Analytical Chemistry, 77, 4587-4594(2005). http://www.ncbi.nlm.nih.gov/pubmed/16013877

    [98] Liu Z P, Liu L L, Sun M H. et al. A novel and convenient near-infrared fluorescence "turn off-on" nanosensor for detection of glucose and fluoride anions[J]. Biosensors and Bioelectronics, 65, 145-151(2015). http://www.ncbi.nlm.nih.gov/pubmed/25461150

    [99] Yum K, Ahn J H. McNicholas T P, et al. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose[J]. ACS Nano, 6, 819-830(2012). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1021/nn204323f

    [100] Shibata H, Heo Y J, Okitsu T et al. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring[J]. Proceedings of the National Academy of Sciences, 107, 17894-17898(2010). http://www.europepmc.org/abstract/med/20921374

    [101] Heo Y J, Shibata H, Okitsu T et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences, 108, 13399-13403(2011). http://www.ncbi.nlm.nih.gov/pubmed/21808049

    [102] Yetisen A K, Jiang N, Fallahi A et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 29, 1606380(2017). http://europepmc.org/abstract/MED/28195436

    [103] Friend R H, Gymer R W, Holmes A B et al. Electroluminescence in conjugated polymers[J]. Nature, 397, 121-128(1999).

    [104] Wu H B, Ying L, Yang W et al. Progress and perspective of polymer white light-emitting devices and materials[J]. Chemical Society Reviews, 38, 3391-3400(2009). http://europepmc.org/abstract/MED/20449058

    [105] Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine[J]. Angewandte Chemie International Edition, 52, 3086-3109(2013). http://www.ncbi.nlm.nih.gov/pubmed/23307291/

    [106] Sun K, Tang Y, Li Q et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer[J]. ACS Nano, 10, 6769-6781(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.6b02386

    [107] Ramanathan K, Jönsson B R, Danielsson B. Sol-gel based thermal biosensor for glucose[J]. Analytica Chimica Acta, 427, 1-10(2001). http://www.sciencedirect.com/science/article/pii/S0003267000010953

    [108] Gao X J, Yang W Y, Pang P F et al. A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples[J]. Sensors and Actuators B: Chemical, 128, 161-167(2007). http://www.sciencedirect.com/science/article/pii/S0925400507003991

    [109] Beyer U, Fleischer A, Kage A et al. Calibration of the viscometric glucose sensor before its use in physiological liquids-compensation for the colloid-osmotic effect[J]. Biosensors and Bioelectronics, 18, 1391-1397(2003). http://europepmc.org/abstract/MED/12896841

    [110] Kuenzi S, Meurville E, Ryser P. Automated characterization of dextran/ concanavalin A mixtures-a study of sensitivity and temperature dependence at low viscosity as basis for an implantable glucose sensor[J]. Sensors and Actuators B: Chemical, 146, 1-7(2010). http://www.sciencedirect.com/science/article/pii/S0925400509009824

    [111] Lee M C, Kabilan S, Hussain A et al. Glucose-sensitive holographic sensors for monitoring bacterial growth[J]. Analytical Chemistry, 76, 5748-5755(2004). http://europepmc.org/abstract/med/15456294

    [112] Kabilan S, Blyth J, Lee M C et al. Glucose-sensitive holographic sensors[J]. Journal of Molecular Recognition, 17, 162-166(2004).

    [113] Nakayama D, Takeoka Y, Watanabe M et al. Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique[J]. Angewandte Chemie International Edition, 115, 4329-4332(2003). http://onlinelibrary.wiley.com/doi/10.1002/ange.200351746/pdf

    [114] Asher S A, Alexeev V L, Goponenko A V et al. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing[J]. Journal of the American Chemical Society, 125, 3322-3329(2003). http://www.ncbi.nlm.nih.gov/pubmed/12630888

    [115] Alexeev V L, Sharma A C, Goponenko A V et al. High ionic strength glucose-sensing photonic crystal[J]. Analytical Chemistry, 75, 2316-2323(2003). http://www.ncbi.nlm.nih.gov/pubmed/12918972

    [116] Tierney S, Volden S, Stokke B T. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform[J]. Biosensors and Bioelectronics, 24, 2034-2039(2009). http://www.sciencedirect.com/science/article/pii/S0956566308005861

    [117] Tierney S, Falch B M, Hjelme D R et al. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo[J]. Analytical Chemistry, 81, 3630-3636(2009). http://www.ncbi.nlm.nih.gov/pubmed/19323502

    Sun Kai, Zhou Hua, Yang Yingkun, Wu Changfeng. Research Advances in Blood Glucose Monitoring System[J]. Chinese Journal of Lasers, 2018, 45(2): 207003
    Download Citation