• Chinese Journal of Lasers
  • Vol. 49, Issue 8, 0802023 (2022)
Qunli Zhang1、2, Hua Huang1、2, Zehao Tang1、2, Guochang Li1、2, Qing’an Niu1、2, Zhijun Chen1、2, Yangqiong Du3, and Jianhua Yao1、2、*
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Collaborative Innovation Center of High-End Laser Manufacturing Equipment (National "2011 Plan" ), Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 3Zhongzhe High-Speed Railway Bearing Co., Ltd., Quzhou, Zhejiang 324407, China
  • show less
    DOI: 10.3788/CJL202249.0802023 Cite this Article Set citation alerts
    Qunli Zhang, Hua Huang, Zehao Tang, Guochang Li, Qing’an Niu, Zhijun Chen, Yangqiong Du, Jianhua Yao. Rolling Wear and Fatigue Damage Behavior of Laser-Induction Hybrid Quenching on 42CrMo Steel[J]. Chinese Journal of Lasers, 2022, 49(8): 0802023 Copy Citation Text show less
    References

    [1] Wu Z. Test analysis and research on fatigue life of heavy-duty bearing[J]. Coal Mine Machinery, 41, 57-59(2020).

    [3] Zhang Q L, Tong W H, Chen Z J et al. Effect of spot size on geometrical characteristics of laser deep quenching hardened layer of 42CrMo steel[J]. Surface Technology, 49, 254-261(2020).

    [4] Zhang Q, Sun S Q, Yang M S. High stress rolling contact fatigue properties of 32Cr3MoVE nitrided bearing steel[J]. Materials for Mechanical Engineering, 43(2019).

    [5] Guo J, Yang M S, Lu D H et al. Rolling contact fatigue and wear characteristics of Cr4Mo4V bearing steel[J]. Tribology, 37, 155-166(2017).

    [6] She L[D]. Study on contact fatigue property of bainitic bearing steels(2015).

    [7] Morsdorf L, Mayweg D, Li Y et al. Moving cracks form white etching areas during rolling contact fatigue in bearings[J]. Materials Science and Engineering A, 771, 138659(2020).

    [8] Oezel M, Janitzky T, Beiss P et al. Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6[J]. Wear, 430/431, 272-279(2019).

    [9] Liang X Z, Zhao G H, Owens J et al. Hydrogen-assisted microcrack formation in bearing steels under rolling contact fatigue[J]. International Journal of Fatigue, 134, 105485(2020).

    [10] Paladugu M, Hyde R S. Material composition and heat treatment related influences in resisting rolling contact fatigue under WEC damage conditions[J]. International Journal of Fatigue, 134, 105476(2020).

    [11] Zhu B P, Zheng L, Qin S. Improvement on contact fatigue life of GCr15 bearing steel by laser surface transformation hardening[J]. Central Iron and Streel Research Institute Technical Bulletin, 55-62(1987).

    [12] Tan W D, Pang M, Jiang G Y et al. Numerical simulation of temperature field in laser phase-transformation hardening of highly-enhanced diesel engine valve seats[J]. Laser & Optoelectronics Progress, 55, 111601(2018).

    [13] Chen S X, Lei W N, Ren W B et al. Microstructures and performance of laser cladding and quenching remanufactured cladding layer on QT700 ductile cast iron gear surface[J]. Laser & Optoelectronics Progress, 58, 0514003(2021).

    [14] Chen Z W, Li C, Gao X et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers, 48, 1002109(2021).

    [15] Zhang Q L, Lin J, Chen Z J et al. Phase transformation process of electromagnetic induction assisted laser quenching based on MSC.Marc software[J]. Chinese Journal of Lasers, 48, 1103002(2021).

    [16] Guan J[D]. Research on rolling contact fatigue damage behavior of M50 bearing steel in aeroengine rolling bearing(2019).

    [17] Yang Z, Fan X F, Qiu C J et al. Microstructure and properties of 40CrNiMoA steel surface after laser quenching[J]. Laser & Optoelectronics Progress, 57, 011405(2020).

    [18] Chen J F, Zhou J Y, Sun L Y et al. Strengthening effect and residual stress of 40Cr steel quenched with fiber laser[J]. Transactions of Materials and Heat Treatment, 36, 95-100(2015).

    [19] Li Y G, Kang G Z, Wang C G et al. Vertical short-crack behavior and its application in rolling contact fatigue[J]. International Journal of Fatigue, 28, 804-811(2006).

    [20] Nakai Y, Shiozawa D, Kikuchi S et al. Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation[J]. Procedia Structural Integrity, 2, 3117-3124(2016).

    [21] Ji Y L[D]. Study on rolling contact fatigue and wear behavior of G23Cr2Ni2Si1Mo nanostructured bainitic bearing steel(2018).

    [22] Su Y S[D]. Research on subsurface damage mechanism of GCr15 contact fatigue(2017).

    [23] Luo M, Wang J G. Effects of nonmetallic inclusions on initiation and propagation of rolling contact fatigue cracks[J]. Bearing, 58-66(2020).

    [24] Zhang Z H[D]. The study on microstructure evolution and fatigue behavior of high nitrogen bearing steel(2018).

    [25] Zhang G Z, Ren R M, Wu S et al. Rolling contact fatigue performance of ER8 wheel steel with non-uniform microstructure[J]. Tribology, 41, 553-563(2021).

    [26] Zheng C L, Zhang F C, Lü B et al. Rolling contact fatigue wear behavior of carbide-free bainitic steel[J]. Journal of Mechanical Engineering, 54, 176-185(2018).

    [27] Ne’lias D, Dumont M L, Champiot F et al. Role of inclusions, surface roughness and operating conditions on rolling contact fatigue[J]. Journal of Tribology, 121, 240-251(1999).

    [28] Ringsberg J W, Bergkvist A. On propagation of short rolling contact fatigue cracks[J]. Fatigue & Fracture of Engineering Materials & Structures, 26, 969-983(2003).

    [29] Liu X D, Liu P T, Zhao X J et al. Influence of original microstructure on rolling contact fatigue properties of ER9 wheel steel[J]. Tribology, 41, 902-912(2021).

    [30] Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 48, 97-103(1981).

    [31] Xing X H, Li Z Y, Yang M J et al. Rolling wear properties of CL60 steel after pulsed Nd∶YAG laser surface melting[J]. Chinese Journal of Lasers, 40, 0303006(2013).

    [32] Liu Y Z, Zhang X, Yang L. Microscopic mechanisms and influencing factors for contact fatigue of rolling bearings[J]. Bearing, 53-57(2015).

    [33] Li W[D]. Study on microstructure and properties of nanobainite in surface layer of carburized bearing steel(2020).

    [34] Wu Z W, Yang M S, Zhao K Y. Study on rolling contact fatigue behavior of high-alloy case-hardened bearing steel[J]. Surface Technology, 50(2021).

    Qunli Zhang, Hua Huang, Zehao Tang, Guochang Li, Qing’an Niu, Zhijun Chen, Yangqiong Du, Jianhua Yao. Rolling Wear and Fatigue Damage Behavior of Laser-Induction Hybrid Quenching on 42CrMo Steel[J]. Chinese Journal of Lasers, 2022, 49(8): 0802023
    Download Citation