• Infrared and Laser Engineering
  • Vol. 48, Issue 1, 102001 (2019)
Wang Jun* and Jiang Yadong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0102001 Cite this Article
    Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure(invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1: 97-105,

    [2] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications [J]. Science, 2013, 341: 620-621.

    [3] http://www. technologyreview. com/Infotech/13438/

    [4] http://news.xinhuanet.com/world/2005-01/09/content_ 2436145.htm

    [5] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417: 156-159.

    [6] Vitiello M S, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser [J]. Nature Photonics, 2012, 6: 525-528.

    [7] Cai X, Sushkov A B, Suess R. J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in grapheme [J]. Nature Nanotechnology, 2014, 9: 814-819.

    [8] Sizov F, Rogalski A. THz detectors[J]. Progress in Quantum Electronics, 2010, 34: 278-347.

    [9] Ignacio I, Carlos D, Jean-Francois M, et al. Operation of GaN planar nanodiodes as THz detectors and mixers [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4: 670-677.

    [10] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11: 865-871.

    [11] Chen S L, Chang Y C, Zhang C, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite [J]. Nature Photonics, 2014, 8: 537-542.

    [12] Marinchio H, Chusseau L, Torres J, et al. Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor [J]. Applied Physics Letters, 2010, 96: 013502.

    [13] Knap W, Rumyantsev S, Vitiello M S, et al. Nanometer size field effect transistors for terahertz detectors [J]. Nanotechnology, 2013, 24: 214002.

    [14] Sherry H, Grzyb J, Zhao Y, et al. A 1k pixel CMOS camera chip for 25 fps real-time terahertz imaging applications [C]//ISSCC, 2012: 252-254.

    [15] Han R, Zhang Y, Kim Y, et al. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS [C]//ISSCC, 2012: 254-256.

    [16] Jiang Y, Jin B, Wu W, et al. Terahertz detectors based on superconducting hot electron bolometers [J]. Science China Information Sciences, 2012, 55: 64-71.

    [17] Xiao-Li Y, O′Brien J. A proposal for optical terahertz detection with externally biased nanopore superlattices [J]. Applied Physics Letters, 2014, 104: 031104.

    [18] Huhn A K, Spickermann G, Ihring A, et al. Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples[J]. Applied Physics Letters, 2013, 102: 121102.

    [19] Romano M, Chulkov A, Sommier A, et al. Broadband sub-terahertz camera based on photothermal conversion and IR thermography[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(5): 448-461.

    [20] Escorcia I, Grant J, Gough J, et al. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode [J]. Optics Letters, 2016, 41(14): 3261-3264.

    [21] Wen Y, Jia D, Wei Ma, et al. Photomechanical meta-molecule array for real-time terahertz imaging [J]. Microsystems & Nanoengineering, 2017, 3: 17071.

    [22] Lee A W, Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array [J]. Optics Letter, 2005, 30(19): 2563.

    [23] Sizov F. Terahertz radiation detectors: the state of the art[J]. Semiconductor Science and Technology, 2018, 33: 123001.

    [24] Aseev A L, Esaev D G, Dem′yanenko M A, et al. Terahertz imaging and radiocopy with 160×120 microbolometer 90 FPS camera [C]//Proceedings of FEL, 2007: 83-85.

    [25] Coppinger M, Sustersic N A, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging [J]. Optical Engineering, 2011, 50(5): 053206.

    [26] Oda N, Komiyama S, Hosako I. Bolometer-type THz-wave detector: USA, US200810237469 [P]. 2008-08-02.

    [27] Oda N, Yoneyama H, Sasaki T, et al. Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays [C]//SPIE, 2008, 6940: 69402Y.

    [28] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector [C]//SPIE, 2010, 8023: 80230A.

    [29] Oda N, Lee A W, Ishi T, et al. Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser[C]//SPIE, 2012, 8363: 83630A.

    [30] Oda N, Ishi T, Kurashina S, et al. Palm-size and real-time terahertz imager, and its application to development of terahertz sources [C]//SPIE, 2013, 8716: 871603.

    [31] Oda N, Okubo S, Sudou T, et al. Image reconstruction method for non-synchronous THz signals [C]//SPIE, 2014, 9102: 910202.

    [32] Nemoto N, Kanda N, Imai R, et al. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure [J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2): 175-182.

    [33] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging [C]//SPIE, 2009, 7311: 73110L.

    [34] Oulachgar H, Marchese L, Alain C, et al. Development of MEMS microbolometer detector for THz applications [C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2010: 1-2.

    [35] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection[C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2011: 1-2.

    [37] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//SPIE, 2012, 8363: 83630B.

    [38] Marchese L, Terroux M, Genereux F, et al. Review of the characteristics of 384×288 pixel THz camera for seethrough imaging [C]//SPIE, 2013, 8900: 890009.

    [39] Oulachgar H, Mauskopf P, Bolduc M, et al. Design and microfabrication of frequency selective uncooled microbolometer focal plane array for terahertz imaging [C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2013: 1-2.

    [40] Marchese L, Terroux M, Dufour D, et al. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera[C]//SPIE, 2014, 9083: 90832G.

    [41] Marchese L E, Terroux M, Doucet M, et al. Reflection imaging in the millimeter-wave rage using a video-rate terahertz camera [C]//SPIE, 2016, 9836: 98362S.

    [42] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging: an optics perspective [C]//SPIE, 2018, 10639: 106392B.

    [43] Simoens F, Durand T, Meilhan J, et al. Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array[C]//SPIE, 2009, 7485: 74850M.

    [44] Nguyen D, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements [J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 299-305.

    [45] Simoens F, Meilhan J, Gidon S, et al. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging [C]//SPIE, 2013, 8846: 88460O.

    [46] Gou J, Jiang Y, Wang J. Terahertz absorption characteristics of NiCr film in a microbolometer focal plane array [J]. Micro and Nano Letters, 2014, 9(3): 215-217.

    [47] Gou J, Wang J, Li W, et al. Terahertz absorption characteristics of NiCr film and enhanced absorption by reactive ion etching in a microbolometer focal plane array [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34: 431-436.

    [48] Gou J, Wang J, Li W, et al. Study on optical properties of nanostructured NiCr filmprepared by magnetron sputtering and RIE for terahertz applications [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(9): 838-844.

    [49] Gou J, Zhang T, Wang J, et al. Spiral antenna-coupled microbridge structures for THz application[J]. Nanoscale Research Letters, 2017, 12: 91.

    [50] Gou J, Niu Q, Liang K, et al. Frequency modulation and absorption improvement of THz micro-bolometer with micro-bridge structure by novel spiral-type antennas [J]. Nanoscale Research Letters, 2018, 13: 74.

    [51] Wang J, Li W, Gou J, et al. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36: 49-59.

    [52] Gou J, Wang J, Zheng X, et al. Detection of terahertz radiation from 2.52 THz CO2 laser using a 320×240 vanadium oxide microbolometer focal plane array [J]. RSC Advances, 2015, 5(102): 84252-84256.

    Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure(invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001
    Download Citation