• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 1, 2140005 (2021)
Yongping Lin1, Dezi Li2, Wang Liu2, Zhaowei Zhong2, Zhifang Li2、*, Youwu He2, and Shulian Wu2
Author Affiliations
  • 1Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices School of Optoelectronic and Communication Engineering Xiamen University of Technology, Xiamen 361024, P. R. China
  • 2Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application College of Photonic and Electronic Engineering Fujian Normal University Fuzhou, Fujian 350007, P. R. China
  • show less
    DOI: 10.1142/s1793545821400058 Cite this Article
    Yongping Lin, Dezi Li, Wang Liu, Zhaowei Zhong, Zhifang Li, Youwu He, Shulian Wu. A measurement of epidermal thickness of fingertip skin from OCT images using convolutional neural network[J]. Journal of Innovative Optical Health Sciences, 2021, 14(1): 2140005 Copy Citation Text show less
    References

    [1] D. D. Hou, Z. H. Di, R. Q. Qi, H. X. Wang, S. Zheng, Y. X. Hong, H. Guo, H. D. Chen, X. H. Gao, "Sea buckthorn (Hippopha€e rhamnoides L.) oil improves atopic dermatitis-like skin lesions via inhibition of NF-B and STAT1 activation," Skin Pharmacol. Physiol. 30(5), 268–276 (2017).

    [2] H. L. Rizzo, S. Kagami, K. G. Phillips, S. E. Kurtz, S. L. Jacques, A. Blauvelt, "IL-23-mediated psoriasis- like epidermal hyperplasia is dependent on IL- 17A," J. Immunol. 186(3), 1495–1502 (2011).

    [3] J. Carlson, R. Ambros, J. Malfetano, J. Ross, R. Grabowski, P. Lamb, H. Figge, M. C. Mihm, "Vulvar lichen sclerosus and squamous cell carcinoma: A cohort, case control, and investigational study with historical perspective; implications for chronic inflammation and sclerosis in the development of neoplasia," Hum. Pathol. 29, 932–948 (1998).

    [4] M. J. Koehler, T. Vogel, P. Elsner, K. K€onig, R. Bückle, M. Kaatz, "In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography," Skin Res. Technol. 16(3), 259–264 (2010).

    [5] E. Decencière, E. Tancrède-Bohin, P. Dokladal, S. Koudoro, A. M. Pena, T. Baldeweck, "Automatic 3D segmentation of multiphoton images: A key step for the quantification of human skin," Skin Res. Technol. 19(2), 115–124 (2013).

    [6] J. Weissman, T. Hancewicz, P. Kaplan, "Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis," Opt. Express 12(23), 5760 (2004).

    [7] T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, K. Ho?mann, "Epidermal thickness assessed by optical coherence tomography and routine histology: Preliminary results of method comparison," J. Eur. Acad. Dermatol. Venereol. 20(7), 791–795 (2006).

    [8] T. Kepp, C. Droigk, M. Casper, M. Evers, G. Hüttmann, N. Salma, D. Manstein, M. P. Heinrich, H. Handels, "Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks," Biomed. Opt. Express 10(7), 3484 (2019).

    [9] J. Welzel, E. Lankenau, R. Birngruber, R. Engelhardt, "Optical coherence tomography of the human skin," J.Am. Acad. Dermatol. 37(6), 958–963 (1997).

    [10] J. Delacruz, J. Weissman, K. Gossage, Automated measurement of epidermal thickness from optical coherence tomography images using line region growing, Photonic Therapeutics and Diagnostics VI, Vol. 7548, p. 75480E (International Society for Optics and Photonics, 2010).

    [11] A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, J. Liu, Epidermal segmentation in high-definition optical coherence tomography, Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS), Milan, Italy, pp. 3045–3048 (2015).

    [12] S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, M. Rajadhyaksha, "Automated delineation of dermal–epidermal junction in reflectance confocal microscopy image stacks of human skin," J. Invest. Dermatol. 135(3), 710–717 (2015).

    [13] X. Yu, Q. Xiong, Y. Luo, N. Wang, L. Wang, H. L. Tey, L. Liu, "Contrast enhanced subsurface fingerprint detection using high-speed optical coherence tomography," IEEE Photonics Technol. Lett. 29, 70–73 (2017).

    [14] S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, T. A. M. Nuijs, "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography," J. Biomed. Opt. 9(2), 274 (2004).

    [15] X. Yang, W. T. Tang, G. Tjio, S. Y. Yeo, Y. Su, "Automatic detection of anatomical landmarks in brain MR scanning using multi-task deep neural networks," Neurocomputing 396, 514–521 (2020).

    [16] X. Yang, L. Wu, W. Ye, K. Zhao, Y. Wang, W. Liu, J. Li, H. Li, Z. Liu, C. Liang, "Deep learning signature based on staging CT for preoperative prediction of sentinel lymph node metastasis in breast cancer," Acad. Radiol. 27(9), 1226–1233 (2020).

    [17] C. J. Lynch, C. Liston, "New machine-learning technologies for computer-aided diagnosis," Nat. Med. 24, 1304–1305 (2018).

    [18] O. Ronneberger, P. Fischer, B. Thomas, U-Net: Convolutional networks for biomedical image segmentation, Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351, Munich, Germany, pp. 234–241 (2015).

    [19] T. Falk, D. Mai, R. Bensch, ?. ?i?ek, A. Abdulkadir, Y. Marrakchi, A. B€ohm, J. Deubner, Z. J?ckel, K. Seiwald, A. Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox, O. Ronneberger, "U-Net: Deep learning for cell counting, detection, and morphometry," Nat. Methods 16, 67–70 (2019).

    [20] R. Asgari, S. Waldstein, F. Schlanitz, M. Baratsits, U. Schmidt-Erfurth, H. Bogunovi?, U-Net with spatial pyramid pooling for drusen segmentation in optical coherence tomography, Int. Workshop on Ophthalmic Medical Image Analysis, Lect. Notes Comput. Sci. (including subseries Lect. Notes Artif. Intell. and Lect. Notes Bioinf.), Vol. 11855, pp. 77– 85, Springer, Cham (2019).

    [21] Y. He, Z. Li, Y. Zhang, H. Li, "Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection," Opt. Commun. 403, 162–165 (2017).

    [22] V. L. Newton, R. S. Bradley, P. Seroul, M. Cherel, C. E. Griffiths, A. V. Rawlings, R. Voegeli, R. E. Watson, M. J. Sherratt, "Novel approaches to characterize age-related remodelling of the dermalepidermal junction in 2D, 3D and in vivo," Skin Res. Technol. 23(2), 131–148 (2017).

    [23] S. Wu, H. Li, X. Zhang, Z. Li, "Optical features for chronological aging and photoaging skin by optical coherence tomography," Lasers Med. Sci. 28, 445– 450 (2013).

    [24] A. P. Yow, J. Cheng, A. Li, R. Srivastava, J. Liu, D. W. K. Wong, H. L. Tey, Automated in vivo 3D high-definition optical coherence tomography skin analysis system, Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS), Lake Buena Vista (Orlando), Florida USA, pp. 3895–3898 (2016).

    [25] H. Chen, X. Pan, X. Lu, Q. Xie, "A modified graph cuts image segmentation algorithm with adaptive shape constraints and its application to computed tomography images," Biomed. Signal Process. Control 62, 102092 (2020).

    Yongping Lin, Dezi Li, Wang Liu, Zhaowei Zhong, Zhifang Li, Youwu He, Shulian Wu. A measurement of epidermal thickness of fingertip skin from OCT images using convolutional neural network[J]. Journal of Innovative Optical Health Sciences, 2021, 14(1): 2140005
    Download Citation