• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 60002 (2016)
Liang Tian1、* and Feng Xiaomei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.060002 Cite this Article Set citation alerts
    Liang Tian, Feng Xiaomei. Research Progress Toward Flat Supercontinuum Generation in Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60002 Copy Citation Text show less
    References

    [1] Morioka T, Takara H, Kawanishi S, et al.. 1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source[J]. Electronics Letters, 1996, 32(10): 906-907.

    [2] Morioka T, Mori K, Kawanishi S, et al.. Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photonics Technology Letters, 1994, 6(3): 365-368.

    [3] Liu B, Zhang L J, Xin X J, et al.. Symmetric terabit WDM pre-DFT OFDM access network using PCF-supercontinuum[J]. Optics Express, 2012, 20(22): 24356-24363.

    [4] Nguyen-The Q, Matsuura M, Kishi N. WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1882-1885.

    [5] Langridge J M, Laurila T, Watt R S, et al.. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 2008, 16(14): 10178-10188.

    [6] Chen Y W, Raikkonen E, Kaasalainen S, et al.. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 2010, 10(7): 7057-7066.

    [7] Manninen A, Kaariainen T, Parviainen T, et al.. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source[J]. Optics Express, 2014, 22(6): 7172-7177.

    [8] Kaasalainen S, Lindroos T, Hyyppa J. Toward hyperspectral lidar: Measurement of spectral backscatter intensity with a supercontinuum laser source[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 211-215.

    [9] Joo J E, Han L J, Sup R B, et al.. Spectrally sampled OCT imaging based on 1.7-μm continuous-wave supercontinuum source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1200-1208.

    [10] Xu B, Nagata T, Yamashita S. Supercontinuum generation in nonlinear fibers using high-energy figure-of-eight mode-locked fiber laser for SD-OCT application[C]. SPIE, 2014, 9157: 91572Y.

    [11] Moon S, Kim D Y. Wide-band supercontinuum generation for sub-micron-resolution OCT by using a laser-diode-seeded amplified pulse source[C]. SPIE, 2006, 6103: 61030Y.

    [12] Tang Tao, Zhao Chen, Chen Zhiyan, et al.. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials[J]. Acta Physica Sinica, 2015, 64(17): 118-124.

    [13] Liang W, Xia H, Li J, et al.. Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents[J]. Cytotechnology, 2011, 63(5): 523-530.

    [15] Supercontinuum laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] https://www.sbir.gov/sbirsearch/detail/9073.

    [16] Yang Jinchuan, Huang Baoku, Zhang Zhengyu, et al.. Simulation study of detecting various gases based on far-infrared wide spectrum laser lidar[J]. Laser & Infrared, 2013, 43(7): 743-746.

    [17] Gan Yuanliu, Wang Xiaofei, Li Fudong. Development of abroad airborne IR counter measure technology[J]. Tactical Missile Technology, 2011(1): 122-126.

    [18] Overton G. IR countermeasures aim for safer flights[J]. Laser Focus World, 2011, 47(8): 35-43.

    [19] Zhang Jie. Development of US military CIRCM system technology[J]. Electro-Optic Technology Application, 2013, 28(1): 7-11.

    [20] Suite of Infrared Countermeasures[SIIRCM][R/OL]. [2015-12-20] http://www.globalsecurity.org/military/systems/aircraft/systems/siircm.htm.

    [21] Islam M N. All-fiber designs extend supercontinuum sources into the mid-IR region[J]. Laser Focus World, 2012, 48(3): 56-60.

    [22] Zhong Ming, Ren Gang. 3~5 μm medium infrared laser countermeasure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3-6.

    [23] Zhu Chen, Li Yao, Wang Xiongfei, et al.. Experiment study of interference of super-continuum light source on CMOS photodetectors[J]. Laser & Infrared, 2014, 44(4): 374-377.

    [24] Omni Sciences, Inc. Award List[R/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/255463.

    [25] Moselund P, Petersen C, Leick L, et al.. Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy[C]. Advanced Solid-State Lasers Congress, Paris, 2013: JTh5A.9.

    [26] Omni Sciences, Inc.[Z/OL]. [2015-12-20] http://sbirsource.com/sbir/firms/4139-omni-sciences-inc.

    [27] Supercontinuum fiber laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/387923.

    [28] High power, broad band photonic crystal fiber lasers[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/381863.

    [29] Supercontinuum laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/384931.

    [30] High power mid-IR laser system for ESASE[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/410311.

    [32] Ye Wen, Ye Benzhi, Huan Kewei, et al.. Development of the airborne laser anti-missile weapon[J]. Laser & Infrared, 2011, 41(5): 481-486.

    [33] Chai Lu, Hu Minglie, Fang Xiaohui, et al.. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese J Lasers, 2013, 40(1): 0101001.

    [34] Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al.. Research progress on supercontinuum generation in fiber tapers[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070004.

    [36] Fang Hong, Ma Ruilong, Wei Huifeng. Effect of fiber splicing of photonic crystal fiber and single-mode fiber on supercontinuum generation[J]. Journal of Xi′an Technological University, 2012, 32(3): 187-191.

    [38] Song Rui, Chen Shengping, Hou Jing, et al.. All-fiber 70 W supercontinuum[J]. High Power Laser and Particle Beams, 2011, 23(3): 569-570.

    [39] Song Rui, Hou Jing, Chen Shengping, et al.. All-fiber 177.6 W supercontinuum source[J]. Acta Physica Sinica, 2012, 61(5): 546-549.

    [40] Song Yanrong, Zhu Jianyin, Zhang Xiao, et al.. The influence of zero-dispersion point of photonic crystal fiber on supercontinuum generation[J]. Acta Sinica Quantum Optica, 2011, 17(3): 237-241.

    [41] Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. Dual-wavelength pumped supercontinuum generation in tapered photonic crystal fiber[J]. Acta Optica Sinica, 2011, 31(2): 0206001.

    [42] Zhang Xiaojuan. Supercontinuum generation in photonic crystal fibers with different dispersion[J]. Journal of Weinan Teachers University, 2011, 26(2): 14-20.

    [44] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics Express, 2013, 21(7): 7851-7857.

    [45] Guo C Y, Ruan S C, Yan P G, et al.. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser[J]. Optics Express, 2010, 18(11): 11046-11051.

    [46] Hu X H, Zhang W, Yang Z, et al.. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 2011, 36(14): 2659-2661.

    [48] Sun Chang, Ge Tingwu, Li Siyuan, et al.. 67.9 W high power all-fiber white-light supercontinuum laser source[J]. High Power Laser and Particle Beams, 2014, 26(12): 120101.

    [49] Li Min, Huo Li, Wang Dong, et al.. Supercontinuum generation based on dual-wavelength coherent ultrashort pulses[J]. Acta Optica Sinica, 2015, 35(4): 0406001.

    [50] Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, high-power, in Raman continuum generation holey fibers[J]. Optics Letters, 2003, 28(15): 1353-1355.

    [51] Travers J C, Popov S V, Taylor J R, et al.. Extended bandwidth CW-pumped infrared supercontinuum generation in low water-loss PCF[C]. Conference on Lasers & Electro-Optics, 2005, 3: 2325-2327.

    [52] Gattass R R, Shaw L B, Sanghera J S. Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber[J]. Optics Letters, 2014, 39(12): 3418-3420.

    [53] Travers J C, Rulkov A B, Cumberland B A, et al.. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser[J]. Optics Express, 2008, 16(19): 14435-14447.

    [54] Kelleher E J R, Erkintalo M, Travers J C. Fission of solitons in continuous-wave supercontinuum[J]. Optics Letters, 2012, 37(24): 5217-5219.

    [55] Chapman B, Popov S V, Taylor R. Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness[J]. IEEE Photonics Technology Letters, 2012, 24(15): 1325-1327.

    [56] Faco M, Carvalho M I, Fernandes G M, et al.. Continuous wave supercontinuum generation pumped in the normal group velocity dispersion regime on a highly nonlinear fiber[J]. Jounal of the Optical Society of America B, 2013, 30(4): 959-966.

    [57] Wang Q, Fan Y X, Li Y Q, et al.. Ultrabroadband SCG with quasi-continuous wave nanosecond-long pump pulses in PCF[J]. Chinese Optics Letters, 2011, 9(7): 071405.

    [58] Wang Yanbin. The study on supercontinuum generation by pumping photonic crystal fibers with long-pulses and continuous-wave[D]. Changsha: National University of Defense Technology, 2011.

    [59] Cheung K K Y, Zhang C, Zhou Y, et al.. Manipulating supercontinuum generation by minute continuous wave[J]. Optics Letters, 2011, 36(2): 160-162.

    [60] Guo C Y, Ruan S C, Yan P G, et al.. A low-cost CW-pumped supercontinuum source[J]. Laser Physics, 2013, 23(5): 1382-1391.

    [61] Guo Chunyu, Lin Huaiqin, Ruan Shuangchen, et al.. High-power all-fiber CW-pumped supercontinuum source[J]. Journal of Shenzhen University (Science & Engineering), 2013, 30(4): 423-427.

    [62] Liu Kun, Shi Hongxing, Liu Jiang, et al.. High-power all-fiber mid-infrared supercontinuum generation pumped by noise-like pulses[J]. Chinese J Lasers, 2015, 42(9): 0902003.

    [63] Chen H W, Chen S P, Wang J H, et al.. 35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser[J]. Optics Communications, 2011, 284(23): 5484-5487.

    [64] Michaille L, Taylor D M, Bennett C R, et al.. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Optics Letters, 2008, 33(1): 71-73.

    [65] Fang X H, Hu M L, Liu B W, et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Optics Letters, 2010, 35(14): 2326-2328.

    [66] Fang X H, Hu M L, Xie C, et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Optics Letters, 2011, 36(6): 1005-1007.

    [67] Fang X H, Hu M L, Huang L L, et al.. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Optics Letters, 2012, 37(12): 2292-2294.

    [68] Chen Hongwei, Wei Huifeng, Liu Tong, et al.. Hundred-watt-level supercontinuum generation in seven-core photonic crystal fiber[J]. Acta Physica Sinica, 2014, 63(4): 044205.

    [69] Fuerbach A, Steinvurzel P, Bolger J A, et al.. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers[J]. Optics Letters, 2005, 30(8): 830-832.

    [70] Pureur V, Dudley J M. Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers[J]. Optics Letters, 2010, 35(16): 2813-2815.

    [71] Pureur V, Dudley J M. Design of solid core photonic bandgap fibers for visible supercontinuum generation[J]. Optics Communications, 2011, 284(6): 1661-1668.

    [72] Jing Qi. Theoretical and experimental researches on photonic crystal fibers nonlinearity and polarization demultiplexing technologies[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.

    [73] Zhang Bin, Hou Jing, Jiang Zongfu. Effects of material dispersion on dispersion in bandgaps of all-solid photonic bandgap fibers[J]. Journal of National University of Defense Technology, 2011, 33(2): 5-8.

    [74] Zhang Bin, Hou Jing, Jiang Zongfu. Controllable high-power supercontinuum generation in all-solid photonic bandgap fibers[J]. Acta Optica Sinica, 2010, 30(9): 2513-2518.

    [75] Zhou H, Chen Z L, Li J, et al.. The effect of PCF combiners on the whole loss under different lengths of transition zone[C]. SPIE, 2011, 8191: 81911Y.

    [76] Liang Dongming. Optical fiber combiner for supercontinuum[D]. Changsha: National University of Defense Technology, 2009.

    [77] Zhang Bin. Study on controllable visible supercontinuum generation and mid-IR supercontinuum generation[D]. Changsha: National University of Defense Technology, 2012

    [79] Bethge J, Husakou A, Mitschke F, et al.. Two-octave supercontinuum generation in a water-filled photonic crystal fiber[J]. Optics Express, 2010, 18(6): 6230-6240.

    [80] Vieweg M, Gissibl T, Pricking S, et al.. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers[J]. Optics Express, 2010, 18(24): 25232-25240.

    [81] Churin D, Nguyen T N, Kieu K, et al.. Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2[J]. Optical Materials Express, 2013, 3(9): 1358-1364.

    [82] Maji P S, Chaudhuri P R. A new design for all-normal near zero dispersion photonic crystal fiber with selective liquid infiltration for broadband supercontinuum generation at 1.55 μm[J]. Journal of Photonics, 2014, 2014: 728592.

    [83] Ebnali-Heidari M, Saghaei H, Koohi-Kamali F, et al.. Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 582-589.

    [84] Vieweg M, Gissibl T, Giessen H. Photonic-crystal fibers are selectively filled with nonlinear liquids[J]. Laser Focus World, 2011, 47(6): 53-55.

    [85] Gissibl T, Vieweg M, Vogel M M, et al.. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: Transition from isolated to coupled spatial modes[J]. Applied Physics B, 2012, 106(3): 521-527.

    [86] Kedenburg S, Vieweg M, Gissibl T, et al.. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region[J]. Optical Materials Express, 2012, 2(11): 1588-1611.

    [87] Gerosa R M, Bozolan A, de Matos C J S, et al.. Novel sealing technique for practical liquid-core photonic crystal fibers[J]. IEEE Photonics Technology Letters, 2012, 24(3): 191-193.

    CLP Journals

    [1] Zhao Tianqi, Wei Dong, Sun Fu, Ding Xin, Zhang Guizhong, Yao Jianquan. Plasma-Induced Dispersive Wave Generation in Hollow-Core Kagome Photonic Crystal Fiber[J]. Chinese Journal of Lasers, 2017, 44(5): 508001

    Liang Tian, Feng Xiaomei. Research Progress Toward Flat Supercontinuum Generation in Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60002
    Download Citation